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Ny X No X -+ X N objects.

Second Rule of counting: If order does not matter.
Count with order.  Divide by number of orderings/sorted object.
Typically: (i)-
Stars and Bars: Sample k objects with replacement from n.
Order doesn’t matter. k stars n— 1 bars.
Typically: ("5~") or (™A1,
Inclusion/Exclusion: two sets of objects.
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Combinatorial Proofs: Identity from counting same in two ways.
Pascal’s Triangle Example: ("f') = (,") + ().
RHS: Number of subsets of n+ 1 items size k.
LHS: (,",) counts subsets of n+ 1 items with first item.
(%) counts subsets of n+ 1 items without first item.
Disjoint — so add!
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Uncertainty does not mean “nothing is known”
» How to best make decisions under uncertainty?

> Buy stocks

» Detect signals (transmitted bits, speech, images, radar,
diseases, etc.)

»> Control systems (Internet, airplane, robots, self-driving
cars, schedule surgeries in a hospital, etc.)

v

How to best use ‘artificial’ uncertainty?

» Play games of chance
» Design randomized algorithms.

Probability

» Models knowledge about uncertainty
» Optimizes use of knowledge to make decisions

v
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The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability:
Precise, unambiguous, simple(!) way to reason about uncertainty.

Probability = Serenity

Uncertainty = Fear
Our mission: help you discover the serenity of Probability, i.e., enable
you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.
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Flip a fair coin:

What do we mean by the likelihood of tails is 50%?
Two interpretations:
» Single coin flip: 50% chance of ‘tails’ [subjectivist]
Willingness to bet on the outcome of a single flip
» Many coin flips: About half yield ‘tails’ [frequentist]
Makes sense for many flips

» Question: Why does the fraction of tails converge to the same
value every time? Statistical Regularity! Deep!
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Random Experiment: Flip one Fair Coin

Flip a fair coin: model

Physical Experiment Probability Model

» The physical experiment is complex. (Shape, density, initial
momentum and position, ...)

» The Probability model is simple:

> A set Q of outcomes: Q={H, T}.
> A probability assigned to each outcome:
Pr[H]=0.5,Pr[T] =0.5.
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Random Experiment: Flip one Unfair Coin
Flip an unfair (biased, loaded) coin:

| H:45%
T. 55%

» Possible outcomes: Heads (H) and Tails (T)
Likelihoods: H:pe(0,1)and T:1—p

» Frequentist Interpretation:

v

Flip many times = Fraction 1 — p of tails

v

Question: How can one figure out p? Flip many times

v

Tautology? No: Statistical regularity!
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Flip an unfair (biased, loaded) coin: model

TO1-p

Physical Experiment Probability Model
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Flip Two Fair Coins

» Possible outcomes: {HH,HT, TH,TT} = {H, T}2.
> Note: Ax B:={(a,b)|ac Abc B}and A> .= Ax A.
» Likelihoods: 1/4 each.
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Flips two coins glued together side by side:

Glued coins

» Possible outcomes: {HT, TH}.
» Likelihoods: HT : 0.5, TH: 0.5.



Flip Glued Coins

Flips two coins glued together side by side:

Glued coins

» Possible outcomes: {HT, TH}.
» Likelihoods: HT : 0.5, TH: 0.5.

» Note: Coins are glued so that they show different faces.
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Flips two coins attached by a spring:

ST

Attached coins

» Possible outcomes: {HH,HT,TH, TT}.
» Likelihoods:



Flip two Attached Coins

Flips two coins attached by a spring:

Z S &) N 10%
Attached coins 4

» Possible outcomes: {HH,HT,TH, TT}.
» Likelihoods: HH :0.4,HT : 0.1,TH:0.1,TT : 0.4.



Flip two Attached Coins

Flips two coins attached by a spring:

» Possible outcomes: {HH,HT,TH, TT}.
» Likelihoods: HH :0.4,HT : 0.1,TH:0.1,TT : 0.4.

» Note: Coins are attached so that they tend to show the same
face, unless the spring twists enough.
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Here is a way to summarize the four random experiments:
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Here is a way to summarize the four random experiments:
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» Q is the set of possible outcomes;

» Each outcome has a probability (likelihood);
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Here is a way to summarize the four random experiments:
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» The probabilities are > 0 and add up to 1;
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Here is a way to summarize the four random experiments:
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» The probabilities are > 0 and add up to 1;
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Here is a way to summarize the four random experiments:
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» Q is the set of possible outcomes;

» Each outcome has a probability (likelihood);
» The probabilities are > 0 and add up to 1;
» Fair coins: [1]; Glued coins: [3],[4];

Spring-attached coins: [2];
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Important remarks:

» Each outcome describes the two coins.



Flipping Two Coins

Ly S o 2 o

/ \\ e N / \\
fTH® ©HHY ftH® OHH\ [TH® ©QHH) frIH®  OHH

( 095 0.25 | | 0. . B [ | [ ns o0 |

II I| |I l| L | \ II
\rre ot/ \rre enr/ \ITe our/ \rtre eur,/
025 0.25 S \H_Ih.l 0l / \Hy.ﬁ 0 S N0 [

(1] (2] (3] [4]
Important remarks:
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» E.g., HT is one outcome of each of the above experiments.
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» E.g., HT is one outcome of each of the above experiments.

» Wrong to think that outcomes are {H, T} and that one picks

twice from that set.
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» Each outcome describes the two coins.

» E.g., HT is one outcome of each of the above experiments.

» Wrong to think that outcomes are {H, T} and that one picks

twice from that set.

» Indeed, this viewpoint misses the relationship between the two

flips.
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» Each outcome describes the two coins.

» E.g., HT is one outcome of each of the above experiments.

» Wrong to think that outcomes are {H, T} and that one picks

twice from that set.

» Indeed, this viewpoint misses the relationship between the two

flips.

» Each o € Q describes one outcome of the complete experiment.
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Important remarks:
» Each outcome describes the two coins.
» E.g., HT is one outcome of each of the above experiments.

» Wrong to think that outcomes are {H, T} and that one picks
twice from that set.

» Indeed, this viewpoint misses the relationship between the two
flips.

» Each o € Q describes one outcome of the complete experiment.

» Q and the probabilities specify the random experiment.
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Flipping n times

Flip a fair coin ntimes (some n>1):
» Possible outcomes: {TT---T,TT---H,...,HH---H}.
Thus, 2" possible outcomes.
» Note: {TT---T,TT---H,....HH---H} ={H, T}".
A" :={(ay,...,an) | @1 €A,...,an € A}. |A"| = |A]".
> Likelihoods: 1/2" each.

2 "OTTT---TT
2~ "OTTT---TH
2~ "OTTT---HT
2 "OTTT---HH

27"OHHH---HT
27"OHHH---HI
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Roll a balanced 6-sided die twice:
> Possible outcomes: {1,2,3,4,5,612 = {(a,b) |1 < a,b <6}.
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Roll two Dice

Roll a balanced 6-sided die twice:
» Possible outcomes: {1,2,3,4,5,6}% = {(a,b) |1 < a,b <6}.
> Likelihoods: 1/36 for each.
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Physical Experiment Probability Model
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1. A “random experiment”:
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2. A set of possible outcomes: €.

(@) Q= {H7 T};
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Q] = (552)-
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Probability Space.

1. A “random experiment”:
(a) Flip a biased coin;
(b) Flip two fair coins;
(c) Deal a poker hand.
2. A set of possible outcomes: €.
(@ Q={H,T};
(b) Q={HH,HT,TH,TT}; || = 4;
(€) Q={ Ad AO Ad AV K&, A AO A AV Q, ...}
Q] = (552)-
3. Assign a probability to each outcome: Pr: Q — [0,1].
(@) Pr[Hl=p,Pr[T] =1—pfor some p € [0,1]
(b) Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = }
() PrlAM A) AR AV Kt | =---=1/(F)
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Probability Space: formalism.

Q is the sample space.
o € Q is a sample point. (Also called an outcome.)
Sample point w has a probability Pr[w] where

» 0< Prim] <1;

> ZweQPr[w]:1‘

Sample Space
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QO I/"*"Q * \ 0< Priw] <1
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Ina unlform probability space each outcome w is equally probable:
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Probability Space: Formalism.

Ina unlform probability space each outcome w is equally probable:

Priw] = \QI for all € Q.
Uniform Probability Space
/""___' 1
Ve \P? [w] =
/ ]
| .
\®, J;' for all w
W [ ] /
e S
Examples:

» Flipping two fair coins, dealing a poker hand are uniform
probability spaces.

» Flipping a biased coin is not a uniform probability space.



Probability Space: Formalism
Simplest physical model of a uniform probability space:



Probability Space: Formalism
Simplest physical model of a uniform probability space:

Prw]

® Red 1/8
® Green 1/8
.0 Maroon 1/8

Physical experiment Probability model



Probability Space: Formalism
Simplest physical model of a uniform probability space:

Prw]
1/8

® Red

® Green 1/8
® Maroon 1/8
Physical experiment Probability model

A bag of identical balls, except for their color (or a label).
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Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

Pr{w]
3/10

4/10
2/10
1/10

® Red

® Green
[ ]

® Blue

Physical experiment Probability model

Q = {Red, Green, Yellow, Blue}

Pr[Red] = %, Pr[Green] = 10 etc.

Note: Probabilities are restricted to rational numbers: X
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Physical model of a general non-uniform probability space:

>

Prw]

" ® Green = 1 p1
. ® Purple = 2 P2

° Yellow W Puw

Fraction p;
of circumference

Physical experiment Probability model

The roulette wheel stops in sector @ with probability py,.

Q={1,2,3,...,N}, Prlo] = po.
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An important remark

» The random experiment selects one and only one outcome in Q.

» For instance, when we flip a fair coin twice

> Q={HH, TH HT TT}
» The experiment selects one of the elements of Q.

> In this case, its wrong to think that Q@ = {H, T} and that the
experiment selects two outcomes.

» Why? Because this would not describe how the two coin flips
are related to each other.

» For instance, say we glue the coins side-by-side so that they
face up the same way. Then one gets HH or TT with probability
50% each. This is not captured by ‘picking two outcomes.
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’ Modeling Uncertainty: Probability Space‘

1. Random Experiment
2. Probability Space: Q; Pr{w] € [0,1]; X, Pr[e] = 1.
3. Uniform Probability Space: Pr{w] =1/|Q] for all ® € Q.
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CS70: On to Events.

’ Events, Conditional Probability, Independence, Bayes’ Rule

Today: Events.
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Setup:

» Random Experiment.
Flip a fair coin twice.

» Probability Space.

» Sample Space: Set of outcomes, €.
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Set notation review

Q Q Q
AUB A\ B
A
Figure: Two events Figure: Union (or) Figure: Difference (A,
not B
0 0 g
ANB AAR
A
Figure: Complement Figure: Intersection Figure: Symmetric

(not) (and) difference (only one)
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Probability of exactly one ‘heads’ in two coin flips?
Idea: Sum the probabilities of all the different outcomes that have
exactly one ‘heads’: HT, TH.

This leads to a definition!
Definition:

> An event, E, is a subset of outcomes: E C Q.
» The probability of E is defined as Pr[E] =Y ,ce Pr[®].

Sample Space
. 7 = Event
NERE \\\\,‘f |
( » o |
N / P E] = .
\1 L\ // PrlE] = ;Pm\
S nnplm (()ut(nmos)

Uniform Probability Space

= 1
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Event: Example

Pr{w]
3110

4/10
2110
1/10

Physical experiment Probability model

Q= {Red3Green Yellow, Iilue}
Pr[Red] = Pr[Green] , etc.
3 + 4 3 4

E ={Red,Green} = Pr|E] = —— —0 0= Pr[Red] + Pr[Green].
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Probability of exactly one heads in two coin flips?

Sample Space, Q = {HH,HT,TH, TT}.
Uniform probability space: Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = %.
Event, E, “exactly one heads”: {TH,HT}.

PrlE]= Y Prio]= 1Bl _2_

1
Q"4 2

weE



Roll a red and a blue die.



Roll a red and a blue die.

Die 2 Q
F -
6 -1-
5 -1- -l Sum to 10°
4 -4-
3 -1-
9 .. . __‘Snm to 7’
1 -4 -
; > Die 1
1 2 3 4 5 6

PriSum to 7] = — PriSum to 10] =

r[Sum to 7] = o r[Sum to 10] = o=
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\ Observe:
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| Law of Large Numbers;
oot / » Bell-shape: Central Limit
i Theorem.
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Sample space: Q = set of 100 coin tosses = {H, T}'%.
IQ=2x2x..-x2=2100,

Uniform probability space: Pr[w] = zﬂﬁ

Event E = “100 coin tosses with exactly 50 heads”

|E|?

Choos?otgo positions out of 100 to be heads.
|E|= (50)-

(100)
PriE] = 360
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Calculation.

Stirling formula (for large n):

nl'~+v2zxn (g)n.

(2n> _V4mn(2n/e)*" 4"
n) " [Vern(n/e)2  Van

|El _ |E| 1 1

PrlE] = =——=——~.08.

Q| ~ 220 Jzn 50z
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Summary.

—_

o~ 0N

. Random Experiment

Probability Space: Q; Pr{w] € [0,1]; X, Pr[o] =1.
Uniform Probability Space: Pr[w] =1/|Q2| for all ® € Q.
Event: “subset of outcomes.” AC Q. Pr[A] =Y yea Prio]

Some calculations.



