CS 70 Discrete Mathematics and Probability Theory DIS 01B

1 Induction

Prove the following using induction:

(a) Let a and b be integers with $a \neq b$. For all natural numbers $n \ge 1$, $(a^n - b^n)$ is divisible by (a-b).

(b) For all natural numbers n, $(2n)! \le 2^{2n} (n!)^2$. [Note that 0! is defined to be 1.]

2 Make It Stronger

Suppose that the sequence $a_1, a_2, ...$ is defined by $a_1 = 1$ and $a_{n+1} = 3a_n^2$ for $n \ge 1$. We want to prove that

$$a_n \leq 3^{2'}$$

for every positive integer *n*.

(a) Suppose that we want to prove this statement using induction, can we let our induction hypothesis be simply $a_n \le 3^{2^n}$? Show why this does not work.

(b) Try to instead prove the statement $a_n \le 3^{2^n-1}$ using induction. Does this statement imply what you tried to prove in the previous part?

3 Binary Numbers

Prove that every positive integer n can be written in binary. In other words, prove that we can write

$$n = c_k \cdot 2^k + c_{k-1} \cdot 2^{k-1} + \dots + c_1 \cdot 2^1 + c_0 \cdot 2^0,$$

where $k \in \mathbb{N}$ and $c_k \in \{0, 1\}$.