CS 70 Discrete Mathematics and Probability Theory DIS 04A

1 Chinese Remainder Theorem Practice

In this question, you will solve for a natural number *x* such that,

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 4 \pmod{7}$$
(1)

(a) Suppose you find 3 natural numbers a, b, c that satisfy the following properties:

$a \equiv 2$	(mod 3)	; $a \equiv 0$ (mod 5); $a \equiv 0$ ($\mod 7$), ((2))
--------------	---------	------------------	-------	-------------------	----------	------	-----	---

- $b \equiv 0 \pmod{3}$; $b \equiv 3 \pmod{5}$; $b \equiv 0 \pmod{7}$, (3)
- $c \equiv 0 \pmod{3}$; $c \equiv 0 \pmod{5}$; $c \equiv 4 \pmod{7}$. (4)

Show how you can use the knowledge of a, b and c to compute an x that satisfies (1).

In the following parts, you will compute natural numbers a, b and c that satisfy the above 3 conditions and use them to find an x that indeed satisfies (1).

- (b) Find a natural number *a* that satisfies (2). In particular, an *a* such that $a \equiv 2 \pmod{3}$ and is a multiple of 5 and 7. It may help to approach the following problem first:
 - (b.i) Find a^* , the multiplicative inverse of 5×7 modulo 3. What do you see when you compute $(5 \times 7) \times a^*$ modulo 3, 5 and 7? What can you then say about $(5 \times 7) \times (2 \times a^*)$?
- (c) Find a natural number b that satisfies (3). In other words: $b \equiv 3 \pmod{5}$ and is a multiple of 3 and 7.
- (d) Find a natural number c that satisfies (4). That is, c is a multiple of 3 and 5 and $\equiv 4 \pmod{7}$.
- (e) Putting together your answers for Part (a), (b), (c) and (d), report an x that indeed satisfies (1).

2 CRT Decomposition

In this problem we will find $3^{302} \mod 385$.

- (a) Write 385 as a product of prime numbers in the form $385 = p_1 \times p_2 \times p_3$.
- (b) Use Fermat's Little Theorem to find $3^{302} \mod p_1$, $3^{302} \mod p_2$, and $3^{302} \mod p_3$.
- (c) Let $x = 3^{302}$. Use part (*b*) to express the problem as a system of congruences (modular equations mod 385). Solve the system using the Chinese Remainder Theorem. What is 3^{302} mod 385?

3 Baby Fermat

Assume that *a* does have a multiplicative inverse mod *m*. Let us prove that its multiplicative inverse can be written as $a^k \pmod{m}$ for some $k \ge 0$.

- (a) Consider the sequence $a, a^2, a^3, \dots \pmod{m}$. Prove that this sequence has repetitions. (**Hint:** Consider the Pigeonhole Principle.)
- (b) Assuming that $a^i \equiv a^j \pmod{m}$, where i > j, what can you say about $a^{i-j} \pmod{m}$?
- (c) Prove that the multiplicative inverse can be written as $a^k \pmod{m}$. What is *k* in terms of *i* and *j*?