## 1 Countability and the Halting Problem

Prove the Halting Problem using the set of all programs and inputs.

- a) What is a reasonable representation for a computer program? Using this definition, show that the set of all programs are countable. (*Hint: Python Code*)
- b) We consider only finite-length inputs. Show that the set of all inputs are countable.
- c) Assume that you have a program that tells you whether or not a given program halts on a specific input. Since the set of all programs and the set of all inputs are countable, we can enumerate them and construct the following table.

|                       | $x_1$ | $x_2$ | $x_3$ | $x_4$ |   |
|-----------------------|-------|-------|-------|-------|---|
| $p_1$                 | Н     | L     | Н     | L     |   |
| $p_2$                 | L     | L     | L     | Н     |   |
| <i>p</i> <sub>3</sub> | Н     | L     | Н     | L     |   |
| $p_4$                 | L     | Н     | L     | L     |   |
| :                     | :     | :     | :     | :     | · |

An H (resp. L) in the ith row and jth column means that program  $p_i$  halts (resp. loops) on input  $x_j$ . Now write a program that is not within the set of programs in the table above.



## 2 Fixed Points

Consider the problem of determining if a function F has any fixed points. That is, given a function F that takes inputs from some (possibly infinite) set  $\mathscr{X}$ , we want to know if there is any input  $x \in \mathscr{X}$  such that F(x) outputs x. Prove that this problem is undecidable.

## 3 Computability

Decide whether the following statements are true or false. Please justify your answers.

(a) The problem of determining whether a program halts in time  $2^{n^2}$  on an input of size n is undecidable.

(b) There is no computer program Line which takes a program P, an input x, and a line number L, and determines whether the  $L^{th}$  line of code is executed when the program P is run on the input x.