CS 70 Discrete Mathematics and Probability Theory DIS 14A

1 First Exponential to Die

Let X and Y be Exponential(λ_1) and Exponential(λ_2) respectively, independent. What is

 $\mathbb{P}\big(\min(X,Y)=X\big),\,$

the probability that the first of the two to die is *X*?

2 Chebyshev's Inequality vs. Central Limit Theorem

Let *n* be a positive integer. Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with the following distribution:

$$\mathbb{P}[X_i = -1] = \frac{1}{12};$$
 $\mathbb{P}[X_i = 1] = \frac{9}{12};$ $\mathbb{P}[X_i = 2] = \frac{2}{12}.$

(a) Calculate the expectations and variances of X_1 , $\sum_{i=1}^n X_i$, $\sum_{i=1}^n (X_i - \mathbb{E}[X_i])$, and

$$Z_n = \frac{\sum_{i=1}^n (X_i - \mathbb{E}[X_i])}{\sqrt{n/2}}.$$

(b) Use Chebyshev's Inequality to find an upper bound *b* for $\mathbb{P}[|Z_n| \ge 2]$.

- (c) Can you use *b* to bound $\mathbb{P}[Z_n \ge 2]$ and $\mathbb{P}[Z_n \le -2]$?
- (d) As $n \to \infty$, what is the distribution of Z_n ?
- (e) We know that if $Z \sim \mathcal{N}(0,1)$, then $\mathbb{P}[|Z| \leq 2] = \Phi(2) \Phi(-2) \approx 0.9545$. As $n \to \infty$, can you provide approximations for $\mathbb{P}[Z_n \geq 2]$ and $\mathbb{P}[Z_n \leq -2]$?

3 Why Is It Gaussian?

Let *X* be a normally distributed random variable with mean μ and variance σ^2 . Let Y = aX + b, where a > 0 and *b* are non-zero real numbers. Show explicitly that *Y* is normally distributed with mean $a\mu + b$ and variance $a^2\sigma^2$. The PDF for the Gaussian Distribution is $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. One approach is to start with the cumulative distribution function of *Y* and use it to derive the probability density function of *Y*.

[1.You can use without proof that the pdf for any gaussian with mean and sd is given by the formula $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ where μ is the mean value for X and σ^2 is the variance. 2. The drivative of CDF gives PDF.]