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1. Propositions and Quantifiers

For each of these assertions say whether it is necessarily True or whether it could be False. Give a
brief (couple of lines) justification for your answer, if true the main idea of the proof and if false then
a counterexample. 4 points for each part — 1 for the correct answer and 3 for justification.

(a) P⇒ (¬P⇒ Q)

True False

Answer: True
Justification: We can equivalently write the implication as

P⇒ (¬P⇒ Q) ≡ P⇒ (P∨Q) ≡ ¬P∨ (P∨Q)≡ (¬P∨P)∨Q

and ¬P∨P is always true.

(b) P∧Q and ¬P∨¬Q cannot both be False.
True False

Answer: True
Justification: Note that ¬P∨¬Q≡ ¬(P∧Q), and (P∧Q) and ¬(P∧Q) cannot both be False.

(c) (∀x A(x) ∧ ∀x B(x)) =⇒ ∀x (A(x) ∧ B(x))
True False

Answer: True
Justification: Suppose the left hand side is true. This means for all x, A(x) holds, and similarly,
for all x, B(x) holds. Therefore, for all x, A(x)∧B(x) holds, showing the right hand side is also
true.

(d) (∀x A(x) ∨ ∀x B(x)) =⇒ ∀x (A(x) ∨ B(x))
True False

Answer: True
Justification: Assume towards contradiction that (∀x A(x)∨∀x B(x)) is true but ∀x (A(x)∨B(x))
is false. Then, ∃x ¬(A(x)∨B(x)). However, this contradicts the assumption that (∀x A(x)∨
∀x B(x)), thus proving that whenever (∀x A(x)∨∀x B(x)) is true, ∀x (A(x)∨B(x)) must also be
true.

(e) ∀x (A(x) ∨ B(x)) =⇒ (∀x A(x) ∨ ∀x B(x))
True False

Answer: False
Justification: Consider A(x) and B(x) so that A(x) is true if and only if x is even and B(x) is
true if and only if x is odd. Then, ∀x (A(x)∨B(x)) is true (every number is even or odd) but
(∀x A(x)∨∀x B(x)) is false (it is not the case that every number is even or every number is odd).
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2. Induction Logic For each of the following assertions below, circle the correct alternative: (A) it must
always hold, or (N) it can never hold or (C) it can hold but need not always.1 Give a short (couple of
lines) justification for your answer. The domain of all quantifiers is the natural numbers. 2 points for
each part — 1 point for correct answer and 1 point for justification.

For the following parts assume that P(n), Q(n), and R(n) are predicates on the natural numbers, and
suppose ∀k ∈ N P(k)⇒ Q(k+1), ∀k ∈ N Q(k)⇒ R(k+1), and ∀k ∈ N R(k)⇒ P(k+1).

(a) If (P(0)∧Q(0)∧R(0)) is true then ∀n(P(n)∧Q(n)∧R(n)) is true.
A N C

Answer: A
Justification: Note that

P(0) =⇒ Q(1) =⇒ R(2) =⇒ P(3) =⇒ ···
Q(0) =⇒ R(1) =⇒ P(2) =⇒ Q(3) =⇒ ···
R(0) =⇒ P(1) =⇒ Q(2) =⇒ R(3) =⇒ ···

Therefore, ∀n ∈ N, P(n), Q(n), and R(n) each appear in one of the chains of implications,
meaning that whenever P(0), Q(0), and R(0) are all true, then P(n), Q(n), and R(n) are all true
for any n.

(b) If (P(0)∨Q(0)) is true then ∀n(P(n)∨Q(n)) is true.
A N C

Answer: C
Justification: In the case that P(0), Q(0), and R(0) are all true, then the implication holds by
the reasoning in part (a). However, in the case that Q(0) is true but P(0) and R(0) are false, it is
possible for P(1) and Q(1) to both be false. Therefore, this implication holds in some cases but
not in all.

(c) If (P(0)∨Q(0)∨R(0)) is true then ∀n P(n) is true.
A N C

Answer: C
Justification: If any one of P(0) and Q(0) and R(0) are true, then at least one of the chains of
implication are true. In that case, P(n) is true for the values of n that appear in that true chain of
implication, but we know nothing about the other chains of implication.

(d) If (P(101)∨Q(101)∨R(101)) is true then (¬P(0)) is true.
A N C

Answer: C
Justification: The chain of implications do not go backwards. Therefore knowing P(101)∨
Q(101)∨ R(101) does not tell us anything about P(0). In particular here are two examples
where the premise holds, but P(0) has two different truth values in them.
If we take P(x),Q(x),R(x) to mean x ≥ 100, then P(101)∨Q(101)∨R(101) holds, the chains
of implication hold, and P(0) is false.
If we take P(x),Q(x),R(x) to mean x≥ 0, then again P(101)∨Q(101)∨R(101) holds, the chains
of implication hold, but this time P(0) is true.

1This is just as in HW2. Each part is of the form if P is true then Q is true. Assuming P is true, you must choose (A) if Q is
necessarily true, (N) if Q is necessarily false and (C) otherwise.
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(e) If (¬P(100)∨¬P(101)∨¬P(102)) is true then (¬P(0)∨¬Q(0)∨¬R(0)) is true.
A N C

Answer: A
Justification The contrapositive of this statement is (P(0)∧Q(0)∧R(0))⇒ (P(100)∧P(101)∧
P(102)). This is true because from part (a) we know P(0)∧Q(0)∧R(0) implies that P(n), Q(n),
and R(n) are true for all n.

(f) If (¬P(100)∧¬P(101)∧¬R(101)) is true then (¬P(0)∧¬Q(0)∧¬R(0)) is true.
A N C

Answer: A
Justification The contrapositive of this statement is (P(0)∨Q(0)∨R(0))⇒ (P(100)∨P(101)∨
R(101)). This is true because P(0)∨Q(0)∨R(0) implies that one of the chains of implication is
correct, and P(100), P(101), and R(101) lie in different chains of implication – so one of them
has to be in that true chain of implication.

For the remaining parts, assume we were trying to prove P(n) is true for all n ∈ N by induction
on n. Instead, we succeeded in proving ∀k ∈ N if P(k) is true then P(2k) is true.

(g) If P(0) is true then ∀n P(n) is true.
A N C

Answer: C
Justification: From our known implications, we only know that P(0)⇒ P(0); we do not have
any information about P(n) for any n 6= 0.

(h) If P(1) is true then ∀n P(2n) is true.
A N C

Answer: A
Justification: We can show this by induction. In the base case n = 0, P(20) = P(1) is true. Then
if P(2k) is true, then P(2k+1) = P(2 ·2k) is true too. This shows that P(2n) is true for all n.

(i) If P(0) and P(1) are true then ∀n P(n) is true.
A N C

Answer: C
Justification: P(0) being true says nothing about P(n) for any other values of n; P(1) being true
only forces P(2n) to be true for all n. Together, P(0) and P(1) being true implies nothing about
P(3).

(j) If P(5) is true then (∀n > 1 P(5×2n)) is true.
A N C

Answer: A
Justification: We can show this by induction. In the base case n = 0, P(5×20) = P(5) is true.
If P(5× 2k) is true, then P(5× 2k+1) = P(2× 5× 2k) is true too. This shows that P(5× 2n) is
true for all n.
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3. Hypercubes

Prove that any cycle in an n-dimensional hypercube must have even length.

Recall that a cycle is a closed (simple) path and its length is the number of vertices (edges) in it. The
n dimensional hypercube is a graph whose vertex set is the set of n-bit strings, with an edge between
vertices u, v iff they differ in exactly one bit (Hamming distance = 1).

Answer: Here are three ways to solve this problem: argue via bit flips, parity of Hamming distance,
or induction on n. In each case we try to give credit to solutions according to how clearly they
expressed the main idea. However, induction on n is more difficult and prone to build-up error.

Answer 1: Bit flips

Main idea: moving through an edge in a hypercube flips exactly one bit, and moreover each bit must
be flipped an even number of times to end up at the starting vertex of the cycle.

Here are a sequence of four proofs roughly based on this idea, starting with the most convincing and
ending with the least convincing. Also included is a critique saying what is missing in the later proofs.

Proof 1: Each edge of the hypercube flips exactly one bit position. Let Ei be the set of edges in the
cycle that flip bit i. Then |Ei| must be even. This is because bit i must be restored to its original value
as we traverse the cycle, which means that bit i must be flipped an even number of times. Since each
edge of the cycle must be in exactly one set E j, the total number of edges in the cycle = ∑ j |E j| is a
sum of even numbers and therefore even.

Proof 2: Let C be a cycle in an n-dimensional hypercube. As we go along the edges of C we must
end up where we started. Because traversing an edge in a hypercube flips exactly one bit, this means
every flipped bit must eventually be flipped back. This means that the number of edges in C must be
even.

Proof 3: Each edge of the cycle flips one bit. Let the starting point be x, and let the farthest the cycle
goes from x be y which is at a Hamming distance of k. Then the cycle must flip all those k bits back
to return to x. Therefore the total number of edges in the cycle is k+ k = 2k, an even number.

Proof 4: By induction on n, the dimension of the hypercube. For the induction step, we know that the
(n+ 1)-dimensional hypercube is made up of two n-dimensional hypercubes, where every vertex in
one n-dimensional hypercube has an edge connected to their ’twin’ vertex in the other n-dimensional
hypercube. Any cycle in the (n+ 1)-dimensional hypercube has to go back and forth from one n-
dimensional hypercube to the other an even number of times, since otherwise it will start in one
n-dimensional hypercube, and end in the other, and cannot be a cycle. So each edge in the cycle is
either in n-dimensional hypercube or the other or goes between the two n-dimensional hypercubes.
The number of edges of each of the first two types is even by the induction hypothesis and the last
number is even as shown earlier. Therefore the total number of edges in the cycle is even.

Critique of Proofs 2–4:

(a) Proof 2 is almost correct, and got full credit. However, if one were to be picky one might say
that the proof does not make it clear that each bit can be flipped back and forth, and must indeed
flip an even number of times (which might be greater than 2) to return to its original value. The
proof is also not very explicit about stating that the total number of edges in the cycle is even
because the number of edges in the cycle corresponding to each bit position is even.

(b) Proof 3 claims the total length of the cycle is twice the Hamming distance from the starting point
x to the farthest point on the cycle. But this claim is false. Starting from x the cycle can move
farther from and closer to x many times, and moreover if y is the farthest point in Hamming
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distance from x, then the number of edges from x to y in the cycle does not need to be equal to
the number of edges from y back to x.

(c) Proof 4 is even farther from being a proof. It correctly points out that the number of times the
cycle crosses back and forth between the two n-dimensional cubes must be even (this is just
saying that the number of times bit 1 is flipped is even). But then it appeals to the inductive hy-
pothesis, and this is quite meaningless, since the intersection of the cycle with the n-dimensional
hypercube will not in general look anything like a cycle.

Answer 2: Parity

Main idea: Parity of Hamming distance is equal to parity of number of edges traversed, so to get a
cycle we need an even number of edges.

Sample proof: Let C be a cycle in an n-dimensional hypercube, and let x be any vertex in C. Argue
(using induction on k or other techniques) that if we start from x and walk for k edges to another vertex
y, then the Hamming distance H(x,y) is even if and only if k is even. Each edge traversal brings about
a change in vertex binary representation at one bit. Therefore, the Hamming distance changes by 1
and its parity flips when we traverse an edge.
But as we go along the edges of C we must eventually get back to x. At this point the Hamming
distance is H(x,x) = 0, which is even. This shows that the number of edges in the cycle must be even
as well.

Answer 3: Induction on n

The most common answer made the mistake of a pretty serious build-up error. Here is an example of
such a proof:

Proof by induction on n, the dimension of the hypercube.

Base case: For n = 2, there is only one cycle and it has length 4, which is even.
Induction Hypothesis: Any cycle in a n-dimensional hypercube has even length.
Induction Step: Let C be a cycle in the (n+ 1)-dimensional hypercube. The (n+ 1)-dimensional
hypercube is made up of two n-dimension hypercubes. There are two cases:

(a) C lies in one of the two n-dimensional hypercubes. In this case we are done by the induction
hypothesis.

(b) C crosses between the two n-dimensional hypercubes. In this case there is an even cycle in each
of the two n-dimensional hypercubes. To connect them, we must remove an edge from each
of the two cycles in the n-dimensional hypercubes and connect each of the endpoints to their
twin vertex in the other n-dimensional hypercube. Now the number of edges in the cycle is
odd+odd+2 = even, where odd = even cycle−one edge.

There are many problems with this proof. First, it completely ignores the fact that the cycle can go
back and forth between the two n-dimensional hypercubes a number of times. But even if we were
to focus on the special case where it goes back and forth just once, the proof is still seriously wrong.
This is because even in this case, the part of the cycle in each n-dimensional hypercube is just a path
between two possibly distant vertices, i.e., it need not look anything like a cycle with one edge deleted.
In particular this path could be of even or odd length.

There is nonetheless a way of writing down a correct proof by induction. This involves a couple of
ideas, including strengthening the induction hypothesis to any tour in the n-dimensional hypercube:

CS 70, Spring 2015, Midterm #1 Solution 6



Name: SID:

Main idea: A tour in an n-dimensional hypercube can be decomposed into some components in the
two (n− 1)-dimensional subcubes plus an even number of crossing edges. The components in both
subcubes can be superimposed to form a tour in the (n− 1)-dimensional hypercube, allowing us to
apply the inductive hypothesis.

Sample proof: We use induction on n.
Base case: For n = 2, it is easy to show that every tour has even length.
Inductive hypothesis: Any tour in the (n−1)-dimensional hypercube has even length.
Inductive step: Let C be a tour in the n-dimensional hypercube. Consider the decomposition of
the n-dimensional hypercube into two (n− 1)-dimensional subcubes. We decompose C into three
parts: the edges that lie in the first subcube, the edges in the second subcube, and the edges crossing
the subcubes. Argue that because C is a tour, the number of crossing edges must be even (but not
necessarily 2). The edges of C in each subcube do not have to be a tour; in fact they can be collections
of disjoint paths. The components in one subcube also don’t have to be equal or symmetrical to
the components in the other subcube. But argue that when you superimpose them (superimpose the
vertices of one subcube with the corresponding vertices in the other subcube), you get a tour in the
(n−1)-dimensional hypercube. Now apply the inductive hypothesis to conclude that the total number
of edges of C in both subcubes must be even. To get the total number of edges in C we need to add
the number of crossing edges, which is also even. This completes the inductive step.
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4. Stable Marriage

Consider the traditional propose and reject stable marriage algorithm. On day j, let Pj(M) be the rank
of the woman that M proposes to (where the first woman on his list has rank 1 and the last has rank
n). Also, let R j(W ) be the total number of men that woman W has rejected up through day j−1 (i.e.
not including the proposals on day j).

(a) Prove that ∑M Pj(M)−∑W R j(W ) is independent of j. What is its value?

Answer: On day j = 1, each man proposes to the first woman on his list so ∑M P1(M) = n, and
no woman rejected any man through day 0, and therefore ∑M P1(M)−∑W R1(W ) = n.
In general, each time a woman rejects a man on day j−1, it increases ∑W R j(W ) by exactly 1.
It also increases ∑M Pj(M) by exactly 1, since the rejected man proposes to the next woman on
his list on day j. Therefore ∑M Pj(M)−∑W R j(W ) stays constant and is independent of j.

More formally, we can prove this by induction on j, with j = 1 as base case.
Induction Hypothesis: Assume ∑M Pj(M)−∑W R j(W ) = n.
Induction Step: The quantity ∑W R j+1(W )−∑W R j(W ) is exactly the number of men rejected
by women on day j. But each of the rejected men propose to the next woman on their list on day
j+1, and so this quantity is also equal to ∑M Pj+1(M)−∑M Pj(M). Equating the two, we get

∑
W

R j+1(W )−∑
W

R j(W ) = ∑
M

Pj+1(M)−∑
M

Pj(M).

Therefore,
∑
M

Pj+1(M)−∑
W

R j+1(W ) = ∑
M

Pj(M)−∑
W

R j(W )

and the right hand side is equal to n by the induction hypothesis.

(b) Conclude that one of the men or women must be matched to someone who is ranked in the top
half of their preference list. You may assume that n is even.

Answer: Assume that no man is matched with a woman in the top half of his preference list.
Each of them must have been rejected at least n

2 times, for a total of at least n2

2 rejections. This
implies that at least one woman must have rejected at least n

2 men (because if not, then the total
number of rejections must be less than n

2 × n, contradiction). But now, by the improvement
lemma, this woman must be matched with a man she likes more than the n

2 men she rejected,
meaning that the man she is matched with is in the top half of her preference list.

Alternative proof:
Assume towards contradiction that every man and every woman is matched to someone who is
ranked in the bottom half of their preference list.
Observe that a man M is matched to someone in the top half of his preference list if and only if
Pm(M)≤ n

2 , where m is the last day of the algorithm. Therefore, if M is matched to someone in
the bottom half of his preference list, then Pm(M) > n

2 , i.e., Pm(M) ≥ n
2 +1. Summing over the

men gives us ∑M Pm(M)≥ n2

2 +n. By part (a), it follows that ∑W Rm(W ) = ∑M Pm(M)−n≥ n2

2 .
Observe also that if Rm(W )≥ n

2 , then by the improvement lemma, W must be matched to some-
one in the top half of her preference list. Therefore, from our assumption that W is matched to
someone in the bottom half of her preference list, we get Rm(W )< n

2 . Summing over the women
gives us ∑W Rm(W )< n2

2 . But this contradicts our earlier result above!
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5. Counterfeit coins

A bank has a pile of 3n coins, one of which is counterfeit. The counterfeit coin looks identical to a
regular coin in every way except that it is lighter. The bank has a pan balance, but not much time.
Give a recursive algorithm that uses just n weighings to identify the counterfeit coin. Ideally your
algorithm will consist of 3-4 lines of pseudocode. Each weighing involves placing some coins on
each pan of the balance, resulting in one of three outcomes: left side heavier, or right side heavier, or
two sides are the same weight. Prove by induction that your algorithm is correct and terminates in the
claimed number of weighings.

Note that a majority of the points for this question are for proving the correctness of your algorithm
and the bound on the number of weighings. However, you must give a recursive algorithm and failure
to do so will result in 0 points for the entire question.

Answer: This question has three parts, the algorithm, a proof of correctness and a proof of runtime.

Algorithm:
function FINDCOUNTERFEIT(C) . Takes in a pile of coins

if SIZE(C)= 1 then . Base case
return Only coin in pile . The only coin must be counterfeit

end if
Split coins into 3 equal piles, A, B, C . Recursive case
R←WEIGH(A,B)
if R = “Same weight” then

return FIND COUNTERFEIT(C) . C must be lighter
else

return FIND COUNTERFEIT(Lighter of A and B)
end if

end function

Proof of correctness:

We prove that FINDCOUNTERFEIT correctly finds the counterfeit coin in the pile by induction on n.

Base case When n = 0, there is only one coin, and since there is exactly one counterfeit coin, this
coin must be the counterfeit.

Inductive Hypothesis Suppose that when n = k, FINDCOUNTERFEIT can find the counterfeit coin
in a pile with 3k coins containing exactly one counterfeit coin which is lighter than the rest.

Inductive Step Suppose that we have a pile of 3k+1 coins. As in the algorithm, we divide it into three
sub-piles of 3k coins, and weigh two of them against each other, and then isolate one pile to
recursively call FINDCOUNTERFEIT on. We need to prove that this pile contains the counterfeit
coin. There are two cases:

(a) One pile is lighter than the other. Since the piles have equal number of coins, and there
is only one counterfeit coin, it follows that the lighter pile must have the counterfeit coin.
Recursion on that lighter sub-pile of 3k coins would then allow us to correctly find the
counterfeit coin, by the induction hypothesis.

(b) The two weighed piles have exactly the same weight. Again, since there is exactly one
counterfeit coin in the pile of 3k+1 coins, the counterfeit coin must be in the remaining
pile. We recurse on the remaining pile, and thus by the induction hypothesis will find the
counterfeit coin.
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Proof of runtime:

We prove with induction on n that FINDCOUNTERFEIT, when run on a pile of 3n coins, will call
WEIGH exactly n times.

Base case When n = 0, the only coin is returned, so WEIGH is not called.

Inductive Hypothesis Suppose that when n = k, calling FINDCOUNTERFEIT on a pile of 3k coins
will call WEIGH k times.

Inductive Step When we call FINDCOUNTERFEIT on a pile of 3k+1 coins, it only calls WEIGH once
before a recursive call of FINDCOUNTERFEIT on a pile of 3k coins. Because by the induction
hypothesis this will result in k additional weighings. Therefore calling FINDCOUNTERFEIT on
a pile of 3k+1 coins will result in k+1 weighings.

Grading rubric:

Most students got the majority of points if the general idea is correct, i.e., divide the pile into three
equal piles and weigh two of them once. Some lost points because they lacked proofs of run-
time/correctness, or there are some errors in their proofs, or the proofs weren’t explicit enough in
explaining the runtime or showing why the algorithm always can find the pile with the counterfeit in
it. Some students also lost points for minor errors in the algorithm, such as missing a base case or
confusing lighter with heavier.

There are two other common incorrect answers:

Incorrect answer 1:

Divide the piles into two, leaving one coin out if necessary. Then weigh each of the two piles and
recurse on them. This algorithm will not run in exactly n time as required by this problem, although
it will run in approximately log2 3n = n log2 3 time, which is in O(n) but not exactly n. Students with
this solution will get at most 9 points if they have a proof of correctness or a proof of runtime, or less
if these are missing/incorrect.

Incorrect answer 2:

Take 2 coins at a time and weigh them until all the coins are weighed. Although this algorithm can
be written recursively, it would take O(3n) time, which is way more than the time we requested. Such
solutions and similar incorrect algorithms will get at most 3 points.
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6. Trees (This question is harder than the rest. Attempt it only after you take a good shot at the rest.)

Show that the edges of a complete graph on n vertices for n even can be partitioned into n
2 edge disjoint

spanning trees.

Recall that a complete graph is an undirected graph with an edge between every pair of vertices. The
complete graph has n(n−1)

2 edges. A spanning tree is a tree on all n vertices — so it has n−1 edges. So
the complete graph has enough edges (for n even) to create exactly n

2 edge disjoint spanning trees (i.e.
each edge participates in exactly one spanning tree). You have to show that this is always possible.

Answer: We proceed by induction.

Base Case: Consider a complete graph on 2 vertices; this is simply •—•. This can clearly be parti-
tioned into 2

2 = 1 edge disjoint spanning tree, because the graph is already a tree.

Inductive Hypothesis: Assume that the edges of a complete graph on k vertices (for k even) can be
partitioned into k

2 edge disjoint spanning trees.

Inductive Step: We need to partition the edges of a complete graph Gk+2 on k+2 vertices into k
2 +1

edge disjoint spanning trees.

To do this, label the vertices of Gk+2 as v1,v2, . . . ,vk+2. Remove the vertices vk+1 and vk+2 (and
associated edges) to form a complete graph Gk with k vertices v1, . . . ,vk. By the inductive hypothesis,
Gk has k

2 edge disjoint spanning trees; call these trees T1, . . . ,Tk/2.

Add the vertices vk+1 and vk+2 back into Gk to once again form the graph Gk+2. These vertices
come with 2k + 1 extra edges, connecting (vi,vk+1) and (vi,vk+2) for each i = 1,2, . . . ,k, and also
(vk+1,vk+2). These edges must be included into spanning trees.

We wish to extend the trees T1, . . . ,Tk/2 to include the new vertices vk+1 and vk+2. To do this, for each
tree Ti, attach two new edges (vi,vk+1) and (vi+k/2,vk+2). This extends each tree Ti to be a spanning
tree.

The remaining edges form one additional spanning tree. These edges are (vi+k/2,vk+1) and (vi,vk+2)
for i = 1 to k/2, along with the connecting edge (vk+1,vk+2). These edges connect each of the vertices
vk+1 and vk+2 to half the remaining vertices, and together with the edge between vk+1 and vk+2 this
gives the desired spanning tree.

Therefore, we have covered the graph in k
2 + 1 edge disjoint spanning trees. This completes the

induction.

Remark: The key idea here is the following:

Take a graph with k vertices that is partitioned into k
2 spanning trees. In the inductive step, we want

to add two vertices (with associated edges). To maintain a partitioning into spanning trees, we must
expand the preexisting k

2 trees to the new vertices, but this is a bit subtle!

We need to add the two new vertices to each of the preexisting k
2 trees, which takes 2 · k

2 = k edges
connecting the preexisting k vertices to the two new vertices. It’s really important that we use only
one edge out of each of the original vertices! This is because otherwise, we would use up both new
edges out of one of the vertices v j, but then our final new spanning tree wouldn’t be able to reach v j,
so the remaining k+1 edges wouldn’t be able to form a spanning tree!

So to do this, we need to split the original k vertices into two equal subsets of k
2 vertices each, and

connect each half to one of the two new vertices. Once we do that, we can then justify forming a new
spanning tree from the remaining edges, which allows us to complete the argument.
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Name: SID:

Rubric: This was a hard problem, and we graded this problem as an extra credit problem. In order to
receive credit, you needed to have the key idea above – that was really the heart of the problem!
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