CS-70 Discrete Mathematics for Computer Science, Spring 2010
Midterm 2 Solutions

Note: These solutions are not necessarily model answers. They are designed to be tutorial in nature, and
sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may be
more than one correct solution. The maximum number of points is 60. Comments in italics following the
solutions highlight some common errors or give explanations.

1. Euclid’s tunnels [7 points]

(a) The graph has an Euler path starting at A and ending at D iff A and D have odd degree and all other 3pts
vertices have even degree. The tunnel BC should be built to ensure this condition.

(b) The modified graph has an Euler path from B to D iff B and D have odd degree and all other vertices 2pts
have even degree. The tunnel AB should be removed to ensure this condition.

(c) A graph has an Euler tour iff all the vertex degrees are even. Adding the tunnel BD ensures that all 2pts
vertices have even degree. (Alternatively, we can think of the additional tunnel BD as closing the
Euler path in part (b).)

Comments: Almost all people solved this problem correctly. A few people did not realize that part (b) was
equivalent to the existence of an Euler path from B to D. One point was taken off for not explaining the
answers.

2. Counting, counting... [12 points]

(a) Depending on the number of E’s appearing in the six-letter word, we have two cases: 3pts
e E appears zero or one times: there are (g) = 1 choice of six letters with no E, and (g) = 6 choices
of six letters with one E; each of these choices contributes 6! distinct six-letter words;

e E appears twice: there are (g) choices of six letters with two E’s; each of these choices contributes
6!/2! distinct six-letter words (the factor 2! accounts for swapping the two E’s).

In total, there are (2)6! + (2)6! + % (2) distinct six-letter words.

Comments: Quite a few students solved this problem correctly. (Many students divided the first case
above into two separate cases, for no E’s and one E respectively; this gives the same answer and is
. 6!(5 . o .
fine.) Many people simply answered 2(,6) (or some variant of it), without realizing that the factor 2!
is not always present (in the first case above). Partial credit was given to solutions which considered
separately the case when both E’s are present but did not got the correct answer due to careless

mistakes.

(b) The number of triples (a, b, ¢) satisfying 0 < a < b < ¢ < n is exactly the number of ways to sample 3pts

me 2[5 ]

For example, if n = 4 and the three sampled objects are {0,4, 4} (as an unordered set), then (a,b,c) =
(0,4,4). The formula for counting unordered sets can be found in Lecture Note 10. Note that we are
sampling from {0, 1, ...,n}, a set of size n + 1 (instead of n).

three unordered objects from n + 1 objects with replacement, which is ((

Alternative Solution We count the triples (a, b, ¢) separately for the following three cases:

”gl) such triples;

n+1
2

° 0§a<b<c§n:thereare(

e 0<a<b=c<n: thereare (
that 0 < a <b<mn;
e 0 <a=0b < c < n: again, there are (";1) such triples;

) such triples, because we are just counting pairs (a, b) such



e 0 <a=0>b=c < n: there are (”Jlrl) such triples, because we are just counting elements a such

that 0 < a < n.

In total, there are (”;1) + 2(";1) + (anl) such triples.

After simplification (not required), this of course gives the same number (";3) as in other solutions.

Comments: A common minor mistake was to give n (rather than n + 1) as the number of ele-
ments from which we are sampling. A much bigger common mistake was to answer (n;rl) (or (g) ),
which counts the number of objects without replacement. Solutions involving iterated summation (e.g.
Y 0<a<n 2a<b<n( — b+ 1)) orin terms of a, b or c (e.g. (n — a)(n — b)(n — c)) were clearly way
off base.

(c) Assume that we name the three committees A, B and C. Every citizen has exactly six choices 3pts
{A,B,C,AB, AC, BC} to serve on at least one and not all three committees. Since there are n
citizens, each having six possible choices, the required number is .

Comments: Many people got this right. Some people made mistakes and got instead 5", 7" or 3";
they received partial credit.

(d) Solution 1 The number of ways to seat all n students is n!. The number of ways to seat all n students 3pts
such that the two friends are next to each other is 2(n — 1)!: to see this, note that we can then treat
the two friends A and B as a “super-student” (AB or BA), giving n — 1 “students” and thus (n — 1)!
ways of seating them,; the factor of 2 comes from the ordering of A and B. The number of seatings in

which they are not next to each other is therefore ’ n!—2(n—1)! ‘

Solution 2 Let the two friends be A and B, and the seats be numbered 1 through n. Depending on the
seating of A, we count the number of ways of seating B not next to A:

o A takes the first seat 1: B can sit in seats 3 through n, giving a total of n — 2 choices;

o A takes the last seat n: this is symmetric to the previous case, giving a total of n — 2 choices;

o A takes a seat from 2 to n — 1: B cannot take the two seats next to A (nor the seat taken by A),

and thus has a total of n — 3 choices.

Hence the number of possible ways of seating A and Bis2(n—2)+ (n—2)(n—3) = (n—2)(n—1).
For each of these choices, there are (n —2)! ways to seat the remaining n — 2 students (occupying seats
not taken by A or B). Therefore, the total number of ways to seat all n students is (n—2)(n—1)(n—2)!

=|(n—2)(n—1)!}
The answers in both solutions of course agree with each other. For Solution 2, it is also possible to

count the number of seatings of just A and B (i.e. (n — 2)(n — 1)) using ideas related to sampling with
replacement (See part (0) of Question 1, Homework 7).

Comments: Many people got this right. Less compact answers (e.g. [2(n — 2) + (n — 2)(n — 3)](n —
2)!) were also accepted. Partial credit was given to solutions which demonstrated a valid counting
argument, but did not arrive at the correct answer due to careless mistakes.

3. A random number of dice throws [12 points]

(a) This part asks for the probability of scoring a total of 3 points in two throws of a fair die. This is a 3pts
uniform probability space with 6 x 6 = 36 outcomes. Exactly two of these outcomes give a score of 3

(namely, (1,2) and (2,1)), sowe have Pr[X =3 | N =2] = 2 = .

Comments: The most common error here was to confuse the conditional probability Pr[X =3 | N =
2] with the joint probability Pr[X = 3 AN N = 2]. Many students thought that the above value, %,
is actually the joint probability, so to get the conditional probability they divided by Pr[N = 2] = 7,
giving the incorrect solution % / % = %. Note that the correct value for the joint probability is actually

PrX =3AN=2]=Pr[N=2]xPr[X=3|N=2]=1x2=21.



(b)

(©

(d)

Using the total probability rule, we have 3pts
4
Pr(X =3] =) Pr[X =3| N =i] x Pr[N =i, (1)
i=1

(This follows from the fact that the events { IV = i} for 1 < ¢ < 4 partition the probability space: i.e.,
they are disjoint and cover the whole space.) From part (a) we have Pr[X =3 | N = 2| = %. Also,
Pr[X =3 | N = 1] = } (there is only one way to score 3 on a single throw); and Pr[X =3 | N =
3] = 6% e ﬁ (there is only one way to score 3 on three throws, and there are 62 total outcomes); and
Pr[X =3 | N = 4] = 0 (it is not possible to score 3 on four throws). Plugging these values into (1)

gives
1 1 1 1 1 1
PrlX =3]=- X+ -—-X-4+— %X = .
r| 3] 6X2+18X4+216X8+0

Comments: The most common error here was to write
4
PriX =3]=) Pr[X =3| N =]
i=1
instead of equation (1) above—i.e., to forget to weight the conditional probabilities by the probabilities

Pr[N = i]. Another common error was further confusion between conditional and joint probabilities,
as in part (a). It is OK to work with joint probabilities here, in which case (1) would be replaced by

4
PriX =3] =) Pr[X =3AN =i

But this is actually equivalent to (1) because of course Pr[X = 3AN =i =Pr[X =3 | N =
i] x Pr[N = i].

We have 3pts
Pr[X = 3 A N even] PriX =3AN =2]+Pr[X =3AN =4]
Pri X=3|N = =
tX =3[V even] Pr[N even] Pr[N = 2| + Pr[N = 4]
+

Pr[X =3 | N = 2] Pr[N = 2] + 0
Pr[N = 2| + Pr[N = 4]
(1/18) x (1/4)+0 1

1/2+1/4 ot

Comments: A lot of students were confused by this part. Most of the confusion stemmed from mixing
up conditional and joint probabilities (similar to parts (a) and (b) above). Another very common error
was to write

Pr[X =3 | Neven| =Pr[X =3 | N =2]+Pr[X =3 | N =4],
which is simply false. A correct version of this statement is
Pr[X =3 | Neven| =Pr[X =3 | N =2]Pr[N =2 | Neven|+Pr[X =3 | N =4]Pr[N =4 | N even|,
which leads to the same correct answer as above.

By Bayes’ Rule, we have 3pts

B . PrIX=3|N=2]Pr[N=2 (1/18) x (1/4)
PriV =2 X =3] = Pr[X = 3] ~ part(b) '

where the first factor in the numerator comes from part (a).

Comments: Most people got this right, even if they had trouble with some of the previous parts. Full
credit was given for a correct use of Bayes’ Rule even if the values substituted from parts (a) and/or (b)
were incorrect.



4. Locks and keys [10 points]

(a)

(b)

(©

(d)

We open one box iff box 1 contains key 1. The key inside box 1 is chosen uniformly at random, hence 2pts
key 1 is found inside box 1 with probability 1/n.

Let A be the event that box 1 does not contain key 1 and B be the event that the second box opened 2pts
contains key 1. Two boxes will be opened iff the event A N B occurs:

n—1 1 1
X = —.

Pr[A N B] = Pr[A] x Pr[B|A] =

(Note that Pr[B|A] is equal to 1/(n — 1) because, given that key 1 is not in box 1, it is equally likely
to be contained in any of the remaining n — 1 boxes.)

Let A; denote the event that the i-th box opened does  not contain the key to box 1. Exactly k boxes 3pts
will be opened iff the event A1 N As N --- N Ap_1 N Ag occurs. We compute using the definition of
conditional probability:

PI‘[Al NAsN---Ap_q ﬂAk] = PI‘[Aﬂ X PI‘[A2|A1] X - X Pr[Ak_1|ﬂj<k_1 AJ] X Pr[A7k| nj<k AJ]
n—1 n-—2 n—k+1 1 1
n n—1 n—=~k n—k+1 n

(Note that, if the first ¢ — 1 boxes opened do not contain key 1, key 1 is equally likely to be found
among the remaining n — i + 1 boxes, hence Pr[4;[(;; Aj] = (n —i)/(n —i +1).)

Alternative solution: The total number of assignments of n keys to n boxes is equal to n!. We count
the number of assignments for which exactly k boxes are opened. The k boxes by = 1,b,--- , by are
opened iff box b; contains key b;,1 for 1 < ¢ < k and box b contains key 1, while the remaining
boxes can contain arbitrary keys.

The order in which the k£ boxes are opened can be chosen in (Zj) - (k — 1)! ways, and the key
assignment to these k boxes is fixed given the order. There are (n — k)! ways to assign keys to the
remaining boxes. Hence

n—1
(k—1)l(n—k)! -1 1
Pr[exactly k boxes opened| = (i) - € il ) = (n—1) = .
n! n! n

Let X be the random variable counting the number of boxes opened. Then from part (c) we have 3pts
Pr[X = k] = 1/n for all k£ < n. Hence by definition of expectation, we have

n

k nn+1 n+1
Sk _ o+ ) |

n 2n 2

E[X] = Zn:k x Pr[X = k] =
k=1 k=1

Comments: Some students did not calculate the conditional probabilities correctly in part (b). Many stu-
dents did not generalize the argument in part (b) to solve part (c). One point was taken off for not simplifying
the product in part (c) or for inadequate explanations.

5. Random graphs [9 points]

(a)

Let X be the number of Hamiltonian cycles in the random graph G with n vertices. We want to express = 3pts
X as a sum of simple indicator random variables and apply linearity of expectation. A Hamiltonian

cycle in G is specified by a sequence of edges {(v1,v2), (v2,v3), (v3,v4), ..., (Vn—1,Vn), (Un,v1)},
where {v1,v2,...,v,} is a permutation of {1,2,...,n}, the n vertices of G. For each permutation
{v1,v2,...,vn} of {1,2,...,n}, we define the (indicator) random variable X¢,, , . .,} to be 1 if

the Hamiltonian cycle corresponding to the permutation {v;, ve, ..., v,} is present; namely, if the n



edges {(v1,v2), (v2,v3), ..., (Up—1,vy), (vn,v1)} are all present. We may therefore write the number
of Hamiltonian cycles as

X= > X )

{v1,v2,....,un}

Now we know that

E[X (010,00} = P X (01,0000} = 1]
= Pr[(vl, v2), (V2,v3), ..., (Vp—1,Vp), (v, v1) are all present]

=p",

because each edge is present with probability p, independently of others. Now by linearity of expecta-
tion, from (2) we compute

E[X} - E|: Z X{vl,vz,...,vn}:| - Z E[X{vl,vz,...,vn}] = Z p" = n!p",

{v1,v2,...,0n } {v1,v2,...,0n } {v1,v2,....,0n }
because there are n! different premutations of {1,2,...,n}.
Comments: Depending on how one interprets when two Hamiltonian cycles are different, we may
get different answers. For example, if we treat {1,2,3,...,n — 1,n} as the same Hamiltonian cycle
as {2,3,...,n — 1,n,1} (i.e., we treat a shifted cycle as the same as the original), then we get the
answer E[X| = (n — 1)Ip™. If we further treat {1,2,3,...,n — 1,n} as the same Hamiltonian cycle
as {n,n —1,...,3,2,1} (i.e., we further treat a reversed cycle as the same as the original), then we

get the answer E[X| = (n — 1)!p™ /2. All such answers received full credit. Few people were able to

solve this problem correctly using linearity of expectation. Partial credit was given for the expectation

of the individual indicator random variables E[X (y, v,....v,}] = D"

3pts
(b) Let X be the number of Hamiltonian paths from 1 to n in the random graph G. A Hamiltonian path
from 1 to n is specified by a sequence of edges { (v1, v2), (v2,v3), ..., (Un—1,v)}, where {v1,vo, v, ..., v, }
is a permutation of {1, 2, ..., n} such thatv; = 1 and v,, = n. For each permutation {ve, vs, ..., vp—1}
of {2,3,...,n — 1}, we define the (indicator) random variable X {v2,03,...,0n_1 } t0 be 1 if the Hamilto-
nian path {1, vy, vs3, ..., v,_1,n} is present; namely, if the n—1 edges {(1, v2), (v2, v3), (v3,V4), . .., (Vn—2,Vn—1), (Vn
are all present. Similar to part (a) we have
E[X{vz,v3,~~~yvn—1}] = Pr[X{U27U37~~7'Un—1} = 1]
= Pr[(1,v2), (v2,v3), ..., (n—2,Vn-1), (n—1,n) are all present]
_ pn—l
by the independence of the edges. Now by linearity of expectation we compute
E[X] = E[ Z X{U27”U3,..~,’Unfl}:| = Z E[X{m,vs,...,vnfl}]
{v2,v3,.;0n—1} {v2,v3,...;on—1}
— Z pnfl _ (n - 2)!pn717
{v2,03,..son—1}
because there are (n — 2)! different permutations of {2,3,...,n — 1}.
Few students were able to solve this problem correctly. 3nt
pts
(c) Let X be the number of simple paths of length k£ in G. Any such path in G is specified by a se-
quence of k edges {(vg, v1), (v1,v2),...,(vk—1,vk)}, where the k + 1 vertices {vg,v1,..., v} are
distinct (because the path is simple). For each enumeration {vg, v, ..., v} of k + 1 distinct vertices

of {1,2,...,n}, we define the (indicator) random variable X {vo,v1,....0) t0 be 1 if the simple path



{vo, v1,..., v} is present; namely, if the k edges {(vo, v1), (v1,v2),..., (vk—1,vk)} are all present.
We have

E[X{Uo,v17---7vk}] = Pr [X{'U()le---vvk} = 1]
= PI“[(U[), v1), (v1,02), ..., (Vk—1, V) are all present]
k

9

because each edge is present with probability p, independently of others. Now we compute

E[X] = [ Z X{v07v17---,vk}] = Z E[X{U07U17---7Uk}:|

{vo,v1,...,u} {vo,v1,...,u}
k n k
> o= (1)
{vo,v1,...,u}

because there are (k 41
(k + 1)! enumerations.

) choices of k£ + 1 distinct vertices out of n vertices, and each contributing

Comments: Similarly to part (a), we may get different answers under different interpretations. For

example, if we treat {0,1,2, ..., k} as the same path as {k,k — 1,...,1,0} (i.e., we treat a reversed
path as the same as the original path), then we get the answer E[X] = (k?—l) (k + 1)!p¥/2. All such

variants received full credit. Few students were able to solve this problem fully. There were partial
deductions for miscalculation of the factors (kil) (k+ 1) or pF.

6. A Declaration of (In)dependence [10 points]

(a)

(b)

(©

(d)

Given that N = 100, the distribution of X is just the number of Heads that occur in 100 independent 2pts
coin tosses, each of whose probability of landing Heads is p. This is simply the Binomial distribution
Bin(100, p).

From the law of total probability, Pr[X = k] = > ° Pr[X = k|N = i] x Pr[N = i]. If i < 2pts
k, Pr[X = E|N = i] = 0, and otherwise, from part (a), the probability is given by Bin(i,n).
Additionally, Pr[/N = 4] is given by the Poisson distribution. Thus the above summation is

Pr(X = k] = i <;>pk(1 —p)ik)T-

i=k

We are given that X is distributed according to a Poisson distribution, thus all we need to do is figure 2pts
out E[X], since that will be the parameter of the Poisson distribution. Since E[N] = ), and, in
expectation, a fraction p of the coins will be Heads, we get E[X| = Ap. (This can be made rigorous

using linearity of expectation.) Thus

PriX =k| = ()\p)z!e)""

Comments: Quite a few people gave Np as the parameter of the Poisson distribution. This is the right
idea, but N is a random variable, not a parameter.

%. First observe that 3pts

From the definition of conditional probability, Pr[X = k|Y = i] =
=kandY = i] = Pr[X = kN =

by part (c), Y ~ Pois (A(1 — p)) . Next, observe that Pr[.X



k +i] x Pr[N = k + 4]. Plugging these values in and simplifying, we get:

, PrX =kandY =i] Pr[X =k|N =k +i] x Pr[N =k +
PI'[X = k|Y = Z] = PI‘[Y _ 7,] = ()\(lip))iie—A(l—p)

7!

i i A Fig—A
(kj )pk(l _p) )\(k+i)!

(A(1=p))ie=r1-P)

a!

(k +i)lilpF (1 — p)iXkFie=A
ilk!l(k + )N (1 — p)ie—Aerr
pkz)\ke—/\p ()\p)ke—)\p

k! k!

Comments: Several people got the correct initial expression, but made no effort to simplify it, and
thus failed to realize that this conditional probability is the same as the unconditional probability of
part (c)—as is required for part (e).

(e) From parts (c) and (d), we have Pr[X = j] = ()‘p);%!eﬂp = Pr[X = j|Y = i]. Thus by definition the
event X = j is independent from the event Y = 4.
Comments: Many people claimed that they were dependent because Y = N — X. This would be
correct if N were fixed to be some value; however, N is NOT fixed, and is explicitly given to be a
random variable.

Ipt



