Next up: how big is infinity.	
 Countable Countably infinite. Enumeration 	
Isomorphism principle.	
Given a function, $f : D \to R$. One to One: For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or $\forall x, y \in D, f(x) = f(y) \implies x = y$.	
Onto: For all $y \in R$, $\exists x \in D$, $y = f(x)$.	
$f(\cdot)$ is a bijection if it is one to one and onto.	
Isomorphism principle: If there is a bijection $f: D \rightarrow R$ then $ D = R $.	
L	

How big are the reals or the integers?

Infinite! Is one bigger or smaller?

Countable.

How to count?

0, 1, 2, 3, ...

The Counting numbers. The natural numbers! *N*

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.

If the subset of *N* is infinite, *S* is **countably infinite**.

Same size?

Same number? Make a function f : Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black borderOne to one. Each circle mapped to different square. One to One: For all $x, y \in D, x \neq y \implies f(x) \neq f(y)$. Onto. Each square mapped to from some circle . Onto: For all $s \in R, \exists c \in D, s = f(c)$.

Isomorphism principle: If there is $f: D \rightarrow R$ that is one to one and onto, then, |D| = |R|.

Where's 0?

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,3, Positive integers. 1,2,3, Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one! For any natural number *n*, for z = n + 1, f(z) = (n + 1) - 1 = n. Onto for \mathbb{N} Bijection! $\implies |\mathbb{Z}^+| = |\mathbb{N}|$. But.. but Where's zero? "Comes from 1."

More large sets.

E - Even natural numbers? $f: \mathbb{N} \to E$. $f(n) \to 2n$. Onto: $\forall e \in E, f(e/2) = e$. e/2 is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \implies 2x \neq 2y = f(x) \neq f(y)$ Evens are countably infinite. Evens are same size as all natural numbers.

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable. "Output element of *S*", "Output next element of *S*" ... Any element *x* of *S* has *specific*, *finite* position in list.

 $Z = \{0, 1, -1, 2, -2,\}$ $Z = \{\{0, 1, 2, ..., \} \text{ and then } \{-1, -2, ...\}\}$ When do you get to -1? at infinity? Need to be careful. 61A — streams!

All integers?

What about Integers, Z? Define $f: N \rightarrow Z$.

 $f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$ Onto: For any $z \in Z$,

if $z \ge 0$, f(2z) = z and $2z \in N$. if z < 0, f(2|z|-1) = z and $2|z|+1 \in N$. Integers and naturals have same size!

Countably infinite subsets.

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate *T* as follows: Get next element, *x*, of *S*, output only if $x \in T$.

Implications: Z^+ is countable. It is infinite since the list goes on. There is a bijection with the natural numbers. So it is countably infinite.

All countably infinite sets have the same cardinality.

All binary strings. Enumerate the rational numbers in order... $B = \{0, 1\}^*$. 0,...,1/2,.. $B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots\}.$ Where is 1/2 in list? ϕ is empty string. After 1/3, which is after 1/4, which is after 1/5... For any string, it appears at some position in the list. If *n* bits, it will appear before position 2^{n+1} . A thing about fractions: any two fractions has another fraction between it. Should be careful here. Can't even get to "next" fraction! $B = \{\phi; 0, 00, 000, 0000, \dots\}$ Can't list in "order". Never get to 1. Rationals? Pairs of natural numbers. Positive rational number. Enumerate in list: Lowest terms: a/b $(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),\ldots$ *a*.*b* ∈ *N* 3 🛧 with gcd(a, b) = 1. Infinite subset of $N \times N$. 2 Countably infinite! 1 -All rational numbers? Negative rationals are countable. (Same size as positive 0 rationals.) 1 2 3 0 Put all rational numbers in a list. The pair (a, b), is in first $\approx (a+b+1)(a+b)/2$ elements of list! (i.e., "triangle"). First negative, then nonegative ??? No! Countably infinite. Repeatedly and alternatively take one from each list. Interleave Streams in 61A Same size as the natural numbers!! The rationals are countably infinite.

More fractions?

Enumeration example.

Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$ E.g.: (1,2), (100,30), etc. For finite sets S_1 and S_2 , then $S_1 \times S_2$ has size $|S_1| \times |S_2|$. So, $N \times N$ is countably infinite squared ???

Real numbers ..

Real numbers are same size as integers?

The reals.

Are the set of reals countable? Lets consider the reals [0,1]. Each real has a decimal representation. .50000000... (1/2) .785398162... $\pi/4$.367879441... 1/*e* .632120558... 1 - 1/e.345212312... Some real number

Diagonalization.

- 1. Assume that a set S can be enumerated.
- 2. Consider an arbitrary list of all the elements of *S*.
- 3. Use the diagonal from the list to construct a new element t.
- 4. Show that *t* is different from all elements in the list \implies *t* is not in the list.
- 5. Show that t is in S.
- 6. Contradiction.

Diagonalization.

If countable, there a listing, *L* contains all reals. For example

- 0: .500000000... 1: .785398162...
- 2: .36<mark>7</mark>879441...
- 3: .632120558... 4: .345212312...

.

Construct "diagonal" number: .77677...

Diagonal Number: Digit *i* is 7 if number *i*'s *i*th digit is not 7 and 6 otherwise.

Diagonal number for a list differs from every number in list! Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset [0,1] is not countable!!

Another diagonalization.

The set of all subsets of N.

Example subsets of N: {0}, {0,...,7}, evens, odds, primes,

Assume is countable.

There is a listing, *L*, that contains all subsets of *N*.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

D is different from *i*th set in *L* for every *i*. \implies *D* is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable. (The set of all subsets of S, is the **powerset** of N.)

All reals?

Subset [0, 1] is not countable!! What about all reals? No. Any subset of a countable set is countable. If reals are countable then so is [0, 1].

Diagonalize Natural Number.

Natural numbers have a listing, *L*. Make a diagonal number, *D*: differ from *i*th element of *L* in *i*th digit. Differs from all elements of listing. *D* is a natural number... Not. Any natural number has a finite number of digits. "Construction" requires an infinite number of digits.

The Continuum hypothesis.	Cardinalities of uncountable sets?	Generalized Continuum hypothesis.
	Cardinality of [0, 1] smaller than all the reals? $f: \mathbb{R}^+ \rightarrow [0, 1].$	
There is no set with cardinality between the naturals and the reals.	$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$	There is no infinite set whose cardinality is between the cardinality of an infinite set and its power set.
First of Hilbert's problems!	One to one. $x \neq y$ If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$. If neither in $[0, 1/2]$ a division $\implies f(x) \neq f(y)$. If one is in $[0, 1/2]$ and one isn't, different ranges $\implies f(x) \neq f(y)$. Bijection! [0, 1] is same cardinality as nonnegative reals!	The powerset of a set is the set of all subsets.

Resolution of hypothesis?

Gödel. 1940. Can't use math! If math doesn't contain a contradiction. This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.

Can a program refer to a program?

Can a program refer to itself?

Uh oh....