Review.

Theory: If you drink you must be at least 18.

Which cards do you turn over?

Drink \implies " \ge 18"

"< 18"
Don't Drink. Contrapositive.

 $\land,\lor,\lnot,P\Longrightarrow Q\equiv\lnot P\lor Q.$

Truth Table. Putting together identities. (E.g., cases, substitution.)

Direct Proof.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q') Done?

(b-c)=a(q-q') and (q-q') is an integer so by definition of divides

a|(b-c)

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

Goal: $P \Longrightarrow Q$

Assume P.

...

Therefore Q.

CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example.
- 2. Direct. (Prove $P \Longrightarrow Q$.)
- 3. by Contraposition (Prove $P \Longrightarrow Q$)
- 4. by Contradiction (Prove P.)
- 5. by Cases

If time: discuss induction.

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

100a+10b+c=11k+99a+11b=11(k+9a+b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c. Proved Q: 11|n.

Quick Background and Notation.

Integers closed under addition.

```
a,b \in Z \implies a+b \in Z
```

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No q where true.

4|2? No!

Poll

Formally: $a|b \iff \exists g \in Z \text{ where } b = ag.$

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

The Converse

```
Thm: \forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
Is converse a theorem?
\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)
```

Yes? No?

Poll

Another Direct Proof.

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)
Proof: Assume 11|n.
```

$$\begin{array}{l} n = 100a + 10b + c = 11k \implies \\ 99a + 11b + (a - b + c) = 11k \implies \\ a - b + c = 11k - 99a - 11b \implies \\ a - b + c = 11(k - 9a - b) \implies \\ a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in \mathcal{Z} \end{array}$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: $\forall n \in N', (11|\text{alt. sum of digits of } n) \iff (11|n)$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \Longrightarrow R \land \neg R \equiv False$$

or
$$\neg P \Longrightarrow False$$

Contrapositive of $\neg P \Longrightarrow False$ is $True \Longrightarrow P$.

Theorem P is true. And proven.

Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

П

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

n = qd = q(2k) = 2(kq)

n is even. $\neg P$

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even.

a and b have a common factor. Contradiction.

Another Contraposition...

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

 n^2 is even, $n^2 = 2k, ...\sqrt{2k}$ even?

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Prove $\neg Q \Longrightarrow \neg P$: *n* is odd $\Longrightarrow n^2$ is odd.

n = 2k + 1

 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$

 $n^2 = 2I + 1$ where I is a natural number..

... and n^2 is odd!

 $\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...$

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- \triangleright q cannot be one of the primes as it is larger than any p_i .
- ightharpoonup q has prime divisor p(p > 1 = R) which is one of p_i .
- ightharpoonup p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Product of first k primes..

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- ▶ The chain of reasoning started with a false statement.

Consider example..

- $ightharpoonup 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- ▶ There is a prime in between 13 and q = 30031 that divides q.
- Proof assumed no primes in between p_k and q.

Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get

4 = 3.

By commutativity theorem holds.

Don't assume what you want to prove!

Proof by cases.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$,

then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma

 \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Be really careful!

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^2 - xy) = x^2 - y^2$$

$$x(x - y) = (x + y)(x - y)$$

$$x = (x + y)$$

$$x = 2x$$

1 = 2

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

 $P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.

Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

>

П

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

Summary: Note 2.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse. ...

CS70: Note 3. Induction!

Poll.

- 1. The natural numbers.
- 2. 5 year old Gauss.
- 3. ..and Induction.
- 4. Simple Proof.

Gauss induction proof.

Theorem: For all natural numbers n, $0+1+2\cdots n=\frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \ge 0, P(k) \Longrightarrow P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

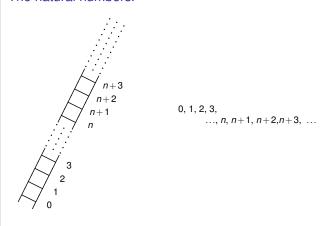
$$= \frac{k^2 + k + 2(k+1)}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

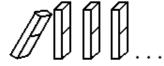
P(k+1)! By principle of induction...

The natural numbers.



Notes visualization

Note's visualization: an infinite sequence of dominos.



Prove they all fall down;

- ► P(0) = "First domino falls"
- $\triangleright (\forall k) P(k) \Longrightarrow P(k+1):$
 - "kth domino falls implies that k + 1st domino falls"

A formula.

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in \mathbb{N}) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

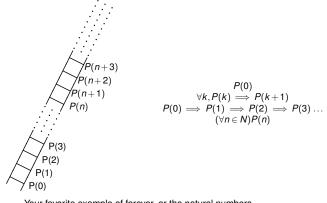
$$\forall (n \in N) : P(n)$$
.

$$P(n)$$
 is " $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ ".

Principle of Induction:

- ► Prove *P*(0).
- ► Assume *P*(*k*), "Induction Hypothesis"
- Prove P(k+1). "Induction Step."

Climb an infinite ladder?



Your favorite example of forever..or the natural numbers...

Gauss and Induction

```
Child Gauss: (\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^n i = \frac{n(n+1)}{2}) Proof? Idea: assume predicate P(n) for n=k. P(k) is \sum_{i=1}^k i = \frac{k(k+1)}{2}. Is predicate, P(n) true for n=k+1? \sum_{i=1}^{k+1} i = (\sum_{i=1}^k i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}. How about k+2. Same argument starting at k+1 works! Induction Step. P(k) \Longrightarrow P(k+1). Is this a proof? It shows that we can always move to the next step. Need to start somewhere. P(0) is \sum_{i=0}^0 i = 0 = \frac{(0)(0+1)}{2} Base Case. Statement is true for n=0 P(0) is true plus inductive step \Longrightarrow true for n=1 (P(0) \land (P(0) \Longrightarrow P(1))) \Longrightarrow P(1) plus inductive step \Longrightarrow true for n=2 (P(1) \land (P(1) \Longrightarrow P(2))) \Longrightarrow P(2) ... true for n=k \Longrightarrow true for n=k+1 (P(k) \land (P(k) \Longrightarrow P(k+1))) \Longrightarrow P(k+1) ...
```

Induction

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- ▶ The sum of the first *n* odd integers is a perfect square.

The basic form

- ▶ Prove P(0). "Base Case".
- $ightharpoonup P(k) \Longrightarrow P(k+1)$
 - ► Assume *P*(*k*), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!! Next Time.

More induction! See you on Thursday!