Review.

Theory: If you drink you must be at least 18.

Which cards do you turn over?

Drink \implies " ≥ 18 "

"< 18" \implies Don't Drink. Contrapositive.

 $\land,\lor,\neg, P \implies Q \equiv \neg P \lor Q.$

Truth Table. Putting together identities. (E.g., cases, substitution.)

CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example.
- 2. Direct. (Prove $P \implies Q$.)
- 3. by Contraposition (Prove $P \implies Q$)
- 4. by Contradiction (Prove P.)
- 5. by Cases

If time: discuss induction.

Quick Background and Notation.

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No q where true.

4|2? No! Poll

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid (b - c)$.

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q') and (q - q') is an integer so by definition of divides a|(b - c)

Works for $\forall a, b, c$? Argument applies to *every* $a, b, c \in Z$. Used distributive property and definition of divides.

Direct Proof Form: Goal: $P \implies Q$ Assume P.

Therefore Q.

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \implies Q$: Assumed P: 11|a-b+c. Proved Q: 11|n.

The Converse

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|nIs converse a theorem? $\forall n \in D_3$, (11|n) \implies (11|alt. sum of digits of n) Yes? No? Poll

Another Direct Proof.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

We have.

Theorem: $\forall n \in N'$, (11 alt. sum of digits of n) \iff (11 |n)

Proof by Contraposition

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P

Another Contraposition...

Lemma: For every *n* in *N*, n^2 is even $\implies n$ is even. $(P \implies Q)$ n^2 is even. $n^2 = 2k \dots \sqrt{2k}$ even? **Proof by contraposition:** $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Q = 'n is even' $\neg Q =$ 'n is odd' Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$ $n^2 = 2l + 1$ where l is a natural number. ... and n^2 is odd! $\neg Q \implies \neg P$ so $P \implies Q$ and ...

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

- $\neg P \implies P_1 \cdots \implies R$
- $\neg P \implies Q_1 \cdots \implies \neg R$
- $\neg P \implies R \land \neg R \equiv False$

or $\neg P \implies False$

Contrapositive of $\neg P \implies False$ is *True* $\implies P$. Theorem *P* is true. And proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even. *a* and *b* have a common factor. Contradiction.

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \le q-x=1.$$

• so $p \le 1$. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- > The chain of reasoning started with a false statement.

Consider example ..

- $\blacktriangleright \ 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes *in between* p_k and q.

Proof by cases.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = v = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. • New values: $x = \sqrt{2}^{\sqrt{2}}$, $v = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, we have irrational x and y with a rational x^y (i.e., 2). One of the cases is true so theorem holds. Question: Which case holds? Don't know!!!

Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Don't assume what you want to prove!

Be really careful!

Theorem: 1 = 2 Proof: For x = y, we have $(x^{2} - xy) = x^{2} - y^{2}$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

 $P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.

Summary: Note 2.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. Prove *Q*.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

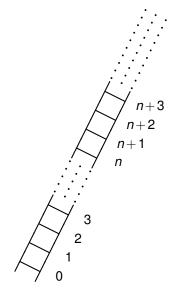
Don't assume the theorem. Divide by zero.Watch converse. ...

CS70: Note 3. Induction!

Poll.

- 1. The natural numbers.
- 2. 5 year old Gauss.
- 3. .. and Induction.
- 4. Simple Proof.

The natural numbers.



A formula.

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

 $\forall (n \in N) : P(n).$ P(n) is " $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ ".

Principle of Induction:

▶ Prove *P*(0).

- Assume P(k), "Induction Hypothesis"
- ▶ Prove P(k+1). "Induction Step."

Gauss induction proof.

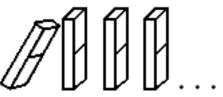
Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0$, $P(k) \implies P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

P(k+1)! By principle of induction...

Notes visualization

Note's visualization: an infinite sequence of dominos.



Prove they all fall down;

• $(\forall k) P(k) \implies P(k+1):$ "*k*th domino falls implies that *k*+1st domino falls"

Climb an infinite ladder?

$$P(n+3)$$

$$P(n+2)$$

$$P(n+1)$$

$$P(n)$$

$$P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) \dots$$

$$(\forall n \in N)P(n)$$

$$P(0)$$

Your favorite example of forever..or the natural numbers...

Gauss and Induction

. . .

. . .

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for $n = k \implies$ true for $n = k + 1 (P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

Predicate, P(n), True for all natural numbers! **Proof by Induction.**

Induction

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

$$\blacktriangleright P(k) \Longrightarrow P(k+1)$$

- Assume P(k), "Induction Hypothesis"
- Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!!!

Next Time.

More induction! See you on Thursday!