

Theory: If you drink you must be at least 18.

Theory: If you drink you must be at least 18.

Which cards do you turn over?

Theory: If you drink you must be at least 18.

Which cards do you turn over?

Drink \implies " ≥ 18 "

Theory: If you drink you must be at least 18.

Which cards do you turn over?

Drink \implies " ≥ 18 "

"< 18" \implies Don't Drink.

Theory: If you drink you must be at least 18.

Which cards do you turn over?

Drink \implies " ≥ 18 "

"< 18" \implies Don't Drink. Contrapositive.

Theory: If you drink you must be at least 18.

Which cards do you turn over?

Drink \implies " ≥ 18 "

"< 18" \implies Don't Drink. Contrapositive.

 $\wedge, \lor, \neg, P \implies Q \equiv \neg P \lor Q.$

Theory: If you drink you must be at least 18.

Which cards do you turn over?

Drink \implies " ≥ 18 "

"< 18" \implies Don't Drink. Contrapositive.

 $\land,\lor,\neg, P \implies Q \equiv \neg P \lor Q.$

Truth Table. Putting together identities. (E.g., cases, substitution.)

CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example.
- 2. Direct. (Prove $P \implies Q$.)
- 3. by Contraposition (Prove $P \implies Q$)
- 4. by Contradiction (Prove P.)
- 5. by Cases

If time: discuss induction.

Integers closed under addition.

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4?

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4?

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4?

7|23?

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4?

7|23?

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4?

7|23?

4|2?

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4?

7|23?

4|2?

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No! Poll

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Poll

Formally: $a|b \iff \exists q \in Z$ where b = aq.

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Poll

Formally: $a|b \iff \exists q \in Z$ where b = aq. 3|15

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Poll

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5,

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Poll

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No!

4|2? No!

Poll

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No q where true.

4|2? No! Poll

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No q where true.

4|2? No! Poll

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

Theorem: For any $a, b, c \in Z$, if a | b and a | c then a | (b - c).

```
Proof: Assume a|b and a|c
b = aq
```

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq'

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q')

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c = aq - aq' = a(q - q') Done?

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q')

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q') and (q - q') is an integer so by definition of divides

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$
 $b = aq$ and $c = aq'$ where $q, q' \in Z$
 $b - c = aq - aq' = a(q - q')$ Done?
 $(b - c) = a(q - q')$ and $(q - q')$ is an integer so by definition of divides
 $a|(b - c)$

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$
 $b = aq$ and $c = aq'$ where $q, q' \in Z$
 $b - c = aq - aq' = a(q - q')$ Done?
 $(b - c) = a(q - q')$ and $(q - q')$ is an integer so by definition of divides
 $a|(b - c)$

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q') and (q - q') is an integer so by definition of divides a|(b - c)

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$
 $b = aq$ and $c = aq'$ where $q, q' \in Z$
 $b - c = aq - aq' = a(q - q')$ Done?
 $(b - c) = a(q - q')$ and $(q - q')$ is an integer so by definition of divides
 $a|(b - c)$

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Used distributive property and definition of divides.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

```
Proof: Assume a|b and a|c

b = aq and c = aq' where q, q' \in Z

b - c = aq - aq' = a(q - q') Done?

(b - c) = a(q - q') and (q - q') is an integer so by definition of divides

a|(b - c)
```

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid (b - c)$.

Proof: Assume
$$a|b$$
 and $a|c$
 $b = aq$ and $c = aq'$ where $q, q' \in Z$
 $b-c = aq - aq' = a(q-q')$ Done?
 $(b-c) = a(q-q')$ and $(q-q')$ is an integer so by definition of divides
 $a|(b-c)$

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

Goal: $P \implies Q$

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid (b - c)$.

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q') and (q - q') is an integer so by definition of divides a|(b - c)

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

Goal: $P \implies Q$ Assume P.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

```
Proof: Assume a|b and a|c

b = aq and c = aq' where q, q' \in Z

b - c = aq - aq' = a(q - q') Done?

(b - c) = a(q - q') and (q - q') is an integer so by definition of divides

a|(b - c)
```

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

```
Goal: P \implies Q
Assume P.
```

• • •

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

```
Proof: Assume a|b and a|c

b = aq and c = aq' where q, q' \in Z

b - c = aq - aq' = a(q - q') Done?

(b - c) = a(q - q') and (q - q') is an integer so by definition of divides

a|(b - c)
```

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

```
Goal: P \implies Q
Assume P.
```

Therefore Q.

. . .

Let D_3 be the 3 digit natural numbers.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|alt. sum of digits of n) \implies 11|n$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$ Examples: n = 121

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum:

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is *n*,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \implies Q$:

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \implies Q$: Assumed P: 11|a-b+c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \implies Q$: Assumed P: 11|a-b+c. Proved Q: 11|n.

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|n

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|nIs converse a theorem? $\forall n \in D_3$, (11|n) \implies (11|alt. sum of digits of n)

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|nIs converse a theorem? $\forall n \in D_3$, (11|n) \implies (11|alt. sum of digits of n) Yes?

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|nIs converse a theorem? $\forall n \in D_3$, (11|n) \implies (11|alt. sum of digits of n) Yes? No?

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|nIs converse a theorem? $\forall n \in D_3$, (11|n) \implies (11|alt. sum of digits of n) Yes? No? Poll

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

n = 100a + 10b + c = 11k

$$n = 100a + 10b + c = 11k \implies$$

99a + 11b + (a - b + c) = 11k

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b$$

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b)$$

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell$$

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff Often works with arithmetic properties ...

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

We have.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

We have.

Theorem: $\forall n \in N'$, (11|alt. sum of digits of n) \iff (11|n)

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do?

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true? Hey, that rhymes

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume ¬*Q*

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even.

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

$$n = qd$$

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = qd = q(2k)

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = qd = q(2k) = 2(kq)

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = qd = q(2k) = 2(kq)

n is even.

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = qd = q(2k) = 2(kq)

n is even. $\neg P$

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue. Anyway, what to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = qd = q(2k) = 2(kq)

n is even. ¬P

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even $\implies n$ is even. (*P* \implies *Q*) n^2 is even, $n^2 = 2k$, ...

Lemma: For every *n* in *N*, n^2 is even $\implies n$ is even. ($P \implies Q$) n^2 is even, $n^2 = 2k, ..., \sqrt{2k}$ even?

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ $P = 'n^2$ is even.'

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ $P = `n^2 \text{ is even.'} \dots \neg P = `n^2 \text{ is odd'}$ $Q = `n \text{ is even'} \dots \neg Q = `n \text{ is odd'}$ **Prove** $\neg Q \implies \neg P \text{: } n \text{ is odd} \implies n^2 \text{ is odd.}$

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Q = 'n is even' $\neg Q =$ 'n is odd' Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$ $n^2 = 2l + 1$ where *l* is a natural number. ... and n^2 is odd! $\neg Q \implies \neg P$

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Q = 'n is even' $\neg Q =$ 'n is odd' Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$ $n^2 = 2l + 1$ where *l* is a natural number. ... and n^2 is odd! $\neg Q \implies \neg P$ so $P \implies Q$ and ...

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Q = 'n is even' $\neg Q =$ 'n is odd' Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$ $n^2 = 2l + 1$ where *l* is a natural number. ... and n^2 is odd! $\neg Q \implies \neg P$ so $P \implies Q$ and ...

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Must show:

Theorem: $\sqrt{2}$ is irrational. Must show: For every $a, b \in Z$,

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots \implies R$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$
$$\neg P$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$ $\neg P \Longrightarrow Q_1$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$ $\neg P \Longrightarrow Q_1 \cdots$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$ $\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots \implies R$ $\neg P \implies Q_1 \cdots \implies \neg R$ $\neg P \implies R \land \neg R$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots \implies R$ $\neg P \implies Q_1 \cdots \implies \neg R$ $\neg P \implies R \land \neg R \equiv False$

or $\neg P \implies False$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots \implies R$ $\neg P \implies Q_1 \cdots \implies \neg R$ $\neg P \implies R \land \neg R \equiv \mathsf{False}$ or $\neg P \implies \mathsf{False}$

Contrapositive of $\neg P \implies False$ is *True* $\implies P$.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

- $\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$
- $\neg P \implies Q_1 \cdots \implies \neg R$
- $\neg P \implies R \land \neg R \equiv False$

or $\neg P \implies False$

Contrapositive of $\neg P \implies False$ is $True \implies P$. Theorem *P* is true.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

- $\neg P \implies P_1 \cdots \implies R$
- $\neg P \implies Q_1 \cdots \implies \neg R$
- $\neg P \implies R \land \neg R \equiv False$

or $\neg P \implies False$

Contrapositive of $\neg P \implies False$ is $True \implies P$. Theorem *P* is true. And proven.

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$:

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$

 a^2 is even $\implies a$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

 $b^2 = 2k^2$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even. *a* and *b* have a common factor.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even. *a* and *b* have a common factor. Contradiction.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even. *a* and *b* have a common factor. Contradiction.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes. **Proof:**

• Assume finitely many primes: p_1, \ldots, p_k .

Theorem: There are infinitely many primes.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

Theorem: There are infinitely many primes.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

• q cannot be one of the primes as it is larger than any p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*,

Theorem: There are infinitely many primes.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

Theorem: There are infinitely many primes.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\blacktriangleright \implies p|q-x|$$

Theorem: There are infinitely many primes.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \le q-x$$

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \leq q-x=1.$$

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \leq q-x=1.$$

so *p* ≤ 1.

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \leq q-x=1.$$

▶ so $p \le 1$. (Contradicts *R*.)

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \leq q-x=1.$$

▶ so $p \le 1$. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|q-x \implies p \le q-x=1.$$

▶ so $p \le 1$. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Did we prove?

"The product of the first k primes plus 1 is prime."

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example ..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- > The chain of reasoning started with a false statement.

Consider example ..

 $\blacktriangleright \ 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example ..

- $\blacktriangleright 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- > The chain of reasoning started with a false statement.

Consider example ..

- $\blacktriangleright \ 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes *in between* p_k and q.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even!

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even + odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even + even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even + odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even + even = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible.

The fourth case is the only one possible,

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Theorem: There exist irrational *x* and *y* such that x^y is rational. Let $x = y = \sqrt{2}$.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Theorem: There exist irrational *x* and *y* such that x^y is rational. Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^y =$$

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$$

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}}$$

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2}$$

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. • New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = v = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. • New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2). One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = v = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. • New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2). One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = v = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. • New values: $x = \sqrt{2}^{\sqrt{2}}$, $v = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, we have irrational x and y with a rational x^y (i.e., 2). One of the cases is true so theorem holds.

Question: Which case holds?

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = v = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. • New values: $x = \sqrt{2}^{\sqrt{2}}$, $v = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, we have irrational x and y with a rational x^y (i.e., 2). One of the cases is true so theorem holds. Question: Which case holds? Don't know!!!

Theorem: 3 = 4

Theorem: 3 = 4

Proof: Assume 3 = 4.

Theorem: 3 = 4Proof: Assume 3 = 4. Start with 12 = 12.

Theorem: 3 = 4Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3.

Theorem: 3 = 4Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity

Theorem: 3 = 4**Proof:** Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Theorem: 3 = 4Proof: Assume 3 = 4. Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: 1 = 2Proof:

Theorem: 1 = 2**Proof:** For x = y, we have

Theorem: 1 = 2 **Proof:** For x = y, we have $(x^2 - xy) = x^2 - y^2$

Theorem: 1 = 2 **Proof:** For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y)

Theorem: 1 = 2 Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y)x = (x + y)

Theorem: 1 = 2Proof: For x = y, we have $(x^{2} - xy) = x^{2} - y^{2}$ x(x - y) = (x + y)(x - y) x = (x + y)x = 2x

Theorem: 1 = 2 Proof: For x = y, we have $(x^{2} - xy) = x^{2} - y^{2}$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Theorem: 1 = 2 Proof: For x = y, we have $(x^{2} - xy) = x^{2} - y^{2}$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Theorem: 1 = 2 Proof: For x = y, we have $(x^{2} - xy) = x^{2} - y^{2}$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Dividing by zero is no good.

Theorem: 1 = 2Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

Theorem: 1 = 2Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

 $P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.

Direct Proof:

Direct Proof: To Prove: $P \implies Q$.

Direct Proof: To Prove: $P \implies Q$. Assume P.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. Prove *Q*.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q.

By Contraposition:

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition:

To Prove: $P \implies Q$

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition: To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$. By Contradiction:

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition: To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$. By Contradiction: To Prove: P

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. Prove *Q*.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. Prove *Q*.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. Prove *Q*.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. Prove *Q*.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases. Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Direct Proof: To Prove: $P \implies Q$. Assume *P*. Prove *Q*.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. Prove *Q*.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. Prove *Q*.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero.Watch converse.

Direct Proof: To Prove: $P \implies Q$. Assume *P*. Prove *Q*.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero.Watch converse. ...

CS70: Note 3. Induction!

Poll.

CS70: Note 3. Induction!

Poll.

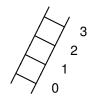
- 1. The natural numbers.
- 2. 5 year old Gauss.
- 3. .. and Induction.
- 4. Simple Proof.

0,

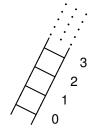
0, 1,

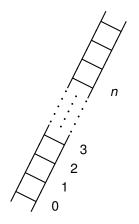
0, 1, 2,

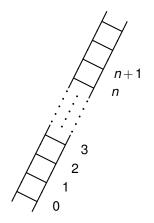
0, 1, 2, 3,



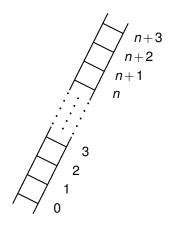
· · · ,



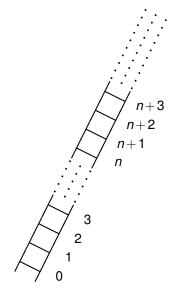




0, 1, 2, 3, ..., *n*, *n*+1,



0, 1, 2, 3, ..., *n*, *n*+1, *n*+2,*n*+3,



Teacher: Hello class.

Teacher: Hello class. Teacher:

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100.

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100.

Gauss: It's

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

 $\forall (n \in N) : P(n).$

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

 $\forall (n \in N) : P(n).$ $P(n) \text{ is } "\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}".$

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

 $\forall (n \in N) : P(n).$ $P(n) \text{ is } "\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}".$

Principle of Induction:

▶ Prove *P*(0).

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

 $\forall (n \in N) : P(n).$ P(n) is " $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ ".

Principle of Induction:

▶ Prove *P*(0).

Assume P(k), "Induction Hypothesis"

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

 $\forall (n \in N) : P(n).$ P(n) is " $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ ".

Principle of Induction:

▶ Prove *P*(0).

- Assume P(k), "Induction Hypothesis"
- ▶ Prove P(k+1). "Induction Step."

Theorem: For all natural numbers $n, 0+1+2\cdots n=\frac{n(n+1)}{2}$

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$?

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0, P(k) \implies P(k+1)$

$$1+\cdots+k+(k+1) =$$

$$1 + \cdots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0$, $P(k) \implies P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

P(k+1)!

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0, P(k) \implies P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

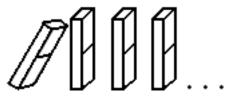
P(k+1)! By principle of induction...

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0, P(k) \implies P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

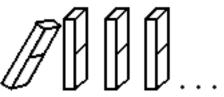
P(k+1)! By principle of induction...

Note's visualization: an infinite sequence of dominos.



Prove they all fall down;

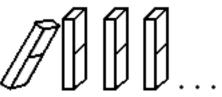
Note's visualization: an infinite sequence of dominos.



Prove they all fall down;

• P(0) = "First domino falls"

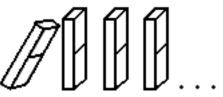
Note's visualization: an infinite sequence of dominos.



Prove they all fall down;

- P(0) = "First domino falls"
- $\blacktriangleright (\forall k) P(k) \Longrightarrow P(k+1):$

Note's visualization: an infinite sequence of dominos.

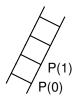


Prove they all fall down;

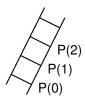
• $(\forall k) P(k) \implies P(k+1):$ "*k*th domino falls implies that *k*+1st domino falls"

P(0)

$$orall k, P(k) \Longrightarrow P(k+1)$$

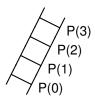


$$P(0) \forall k, P(k) \Longrightarrow P(k+1) P(0) \Longrightarrow P(1) \Longrightarrow P(2)$$

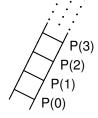


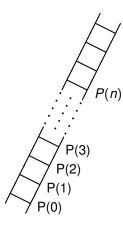
$$P(0)$$

 $\forall k, P(k) \Longrightarrow P(k+1)$
 $P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3)$

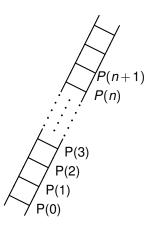


$$\begin{array}{c} P(0) \\ \forall k, P(k) \Longrightarrow P(k+1) \\ P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots \end{array}$$



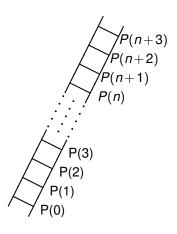


 $\begin{array}{c} P(0) \\ \forall k, P(k) \Longrightarrow P(k+1) \\ P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots \end{array}$



$$P(0)$$

 $\forall k, P(k) \Longrightarrow P(k+1)$
 $P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots$

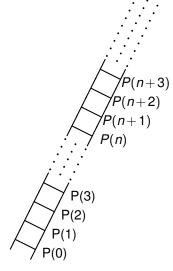


 $\forall k, P(k) \Longrightarrow P(k+1)$ $P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots$



$$P(0) \forall k, P(k) \Longrightarrow P(k+1) P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots (\forall n \in N)P(n)$$

Climb an infinite ladder?



$$P(0)$$

$$\forall k, P(k) \Longrightarrow P(k+1)$$

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots$$

$$(\forall n \in N) P(n)$$

Your favorite example of forever..

Climb an infinite ladder?

$$P(n+3)$$

$$P(n+2)$$

$$P(n+1)$$

$$P(n)$$

$$P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) \dots$$

$$(\forall n \in N)P(n)$$

$$P(0)$$

Your favorite example of forever..or the natural numbers...

Child Gauss:
$$(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

 $\sum_{i=1}^{k+1} i$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

 $\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

 $\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k + 2.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k + 2. Same argument starting at k + 1 works!

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k + 2. Same argument starting at k + 1 works! Induction Step.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof?

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step. Need to start somewhere.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step. Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step. Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step. Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 ($P(0) \land (P(0) \implies P(1))) \implies P(1)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

. . .

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$...

true for n = k

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$...

true for $n = k \implies$ true for n = k + 1

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$...

true for $n = k \implies$ true for $n = k + 1 (P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

. . .

. . .

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

. . .

. . .

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

. . .

. . .

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true

plus inductive step \implies true for n = 1 (P(0) \land (P(0) \implies P(1))) \implies P(1)

plus inductive step \implies true for $n = 2 (P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for $n = k \implies$ true for $n = k + 1 (P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

Predicate, P(n), True for all natural numbers!

. . .

. . .

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true

plus inductive step \implies true for n = 1 (P(0) \land (P(0) \implies P(1))) \implies P(1)

plus inductive step \implies true for $n = 2 (P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for $n = k \implies$ true for $n = k + 1 (P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

Predicate, P(n), True for all natural numbers! **Proof by Induction.**

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.

For all $n \in N$, $n^3 - n$ is divisible by 3.

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

Prove P(0). "Base Case".

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

▶ Prove *P*(0). "Base Case".

$$\blacktriangleright P(k) \Longrightarrow P(k+1)$$

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

Prove P(0). "Base Case".

$$\blacktriangleright P(k) \Longrightarrow P(k+1)$$

Assume P(k), "Induction Hypothesis"

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

Prove P(0). "Base Case".

$$\blacktriangleright P(k) \Longrightarrow P(k+1)$$

- Assume P(k), "Induction Hypothesis"
- Prove P(k+1). "Induction Step."

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

$$\blacktriangleright P(k) \Longrightarrow P(k+1)$$

- Assume P(k), "Induction Hypothesis"
- Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

$$\blacktriangleright P(k) \Longrightarrow P(k+1)$$

- Assume P(k), "Induction Hypothesis"
- Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

$$\blacktriangleright P(k) \Longrightarrow P(k+1)$$

- Assume P(k), "Induction Hypothesis"
- Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

$$\blacktriangleright P(k) \Longrightarrow P(k+1)$$

- Assume P(k), "Induction Hypothesis"
- Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- The sum of the first *n* odd integers is a perfect square.

The basic form

$$\blacktriangleright P(k) \Longrightarrow P(k+1)$$

- Assume P(k), "Induction Hypothesis"
- Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!!

More induction!

Next Time.

More induction! See you on Thursday!