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Poisson: Motivation and derivation.

McDonalds: How many person arrive in an hour?

Know: average is λ .

What is distribution?

Example: Pr [2λ arrivals ]?

Assumption: “arrivals are independent.”

Derivation: cut hour into n intervals of length 1/n.
Pr [ two arrivals ] is “(λ/n)2” or small if n is large.
Model with binomial.
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Poisson

Experiment: flip a coin n times. The coin is such that Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).
Poisson Distribution is distribution of X “for large n.”

We expect X � n. For m� n one has

Pr [X = m] =

(
n
m

)
pm(1−p)n−m, with p = λ/n

=
n(n−1) · · ·(n−m + 1)

m!
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)m(
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=
n(n−1) · · ·(n−m + 1)
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≈(1) λ m

m!
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≈(2) λ m

m!

(
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)n

≈ λ m

m!
e−λ .

For (1) we used m� n; for (2) we used (1−a/n)n ≈ e−a.
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Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Fact: E [X ] = λ .

Proof:

E [X ] =
∞

∑
m=1

m× λ m

m!
e−λ = e−λ

∞

∑
m=1

λ m

(m−1)!

= e−λ
∞

∑
m=0

λ m+1

m!
= e−λ

λ

∞

∑
m=0

λ m

m!

= e−λ
λeλ = λ .
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Variance

The variance measures the deviation from the mean value.

Definition: The variance of X is

σ
2(X ) := var [X ] = E [(X −E [X ])2].

σ(X ) is called the standard deviation of X .
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Variance and Standard Deviation

Fact:
var [X ] = E [X 2]−E [X ]2.

Indeed:

var(X ) = E [(X −E [X ])2]

= E [X 2−2XE [X ] + E [X ]2)

= E [X 2]−2E [X ]E [X ] + E [X ]2, by linearity
= E [X 2]−E [X ]2.
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A simple example

This example illustrates the term ‘standard deviation.’

Consider the random variable X such that

X =

{
µ−σ , w.p. 1/2
µ + σ , w.p. 1/2.

Then, E [X ] = µ and (X −E [X ])2 = σ2. Hence,

var(X ) = σ
2 and σ(X ) = σ .
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Example

Consider X with

X =

{
−1, w. p. 0.99
99, w. p. 0.01.

Then

E [X ] = −1×0.99 + 99×0.01 = 0.
E [X 2] = 1×0.99 + (99)2×0.01≈ 100.

Var(X ) ≈ 100 =⇒ σ(X )≈ 10.

Also,
E(|X |) = 1×0.99 + 99×0.01 = 1.98.

Thus, σ(X ) =
√
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Uniform
Assume that Pr [X = i] = 1/n for i ∈ {1, . . . ,n}. Then

E [X ] =
n

∑
i=1

i×Pr [X = i] =
1
n

n

∑
i=1

i

=
1
n

n(n + 1)

2
=

n + 1
2

.

Also,

E [X 2] =
n

∑
i=1

i2Pr [X = i] =
1
n

n

∑
i=1

i2

=
1
n

(n)(n + 1)(n + 2)

6
=

1 + 3n + 2n2

6
, as you can verify.

This gives

var(X ) =
1 + 3n + 2n2

6
− (n + 1)2

4
=

n2−1
12

.

(Sort of
∫ 1/2

0 x2dx = x3

3 .)
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Variance of geometric distribution.

X is a geometrically distributed RV with parameter p.

Thus, Pr [X = n] = (1−p)n−1p for n ≥ 1. Recall E [X ] = 1/p.

E [X 2] = p + 4p(1−p) + 9p(1−p)2 + ...

−

(1−p)E [X 2] =

−[

p(1−p) + 4p(1−p)2 + ...

]

pE [X 2] = p + 3p(1−p) + 5p(1−p)2 + ...

= 2(p + 2p(1−p) + 3p(1−p)2 + ..)

E [X ]!

−(p + p(1−p) + p(1−p)2 + ...)

Distribution.

pE [X 2] = 2E [X ]−1

= 2(
1
p

)−1 =
2−p

p

=⇒ E [X 2] = (2−p)/p2 and
var [X ] = E [X 2]−E [X ]2 = 2−p

p2 − 1
p2 = 1−p

p2 .

σ(X ) =

√
1−p
p ≈ E [X ] when p is small(ish).
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Fixed points.
Number of fixed points in a random permutation of n items.

“Number of student that get homework back.”

X = X1 + X2 · · ·+ Xn

where Xi is indicator variable for i th student getting hw back.

E(X 2) = ∑
i

E(X 2
i ) +∑

i 6=j
E(XiXj ).

=

n× 1
n

+

(n)(n−1)× 1
n(n−1)

= 1 + 1 = 2.

E(X 2
i ) = 1×Pr [Xi = 1] + 0×Pr [Xi = 0]

= 1
n

E(XiXj ) = 1×Pr [Xi = 1∩Xj = 1] + 0×Pr [“anything else’′]
= 1× (n−2)!

n! = 1
n(n−1)

Var(X ) = E(X 2)− (E(X ))2 = 2−1 = 1.
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Variance: binomial.

E [X 2] =
n

∑
i=0

i2
(

n
i

)
pi (1−p)n−i .

= Really???!!##...

Too hard!

Ok.. fine.
Let’s do something else.
Maybe not much easier...but there is a payoff.
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Properties of variance.

1. Var(cX ) = c2Var(X ), where c is a constant.

Scales by c2.

2. Var(X + c) = Var(X ), where c is a constant.
Shifts center.

Proof:

Var(cX ) = E((cX )2)− (E(cX ))2

= c2E(X 2)−c2(E(X ))2 = c2(E(X 2)−E(X )2)

= c2Var(X )

Var(X + c) = E((X + c−E(X + c))2)

= E((X + c−E(X )−c)2)

= E((X −E(X ))2) = Var(X )
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Variance of Binomial Distribution.

Flip coin with heads probability p.

X - how many heads?

Xi =

{
1 if i th flip is heads
0 otherwise

E(X 2
i ) = 12×p + 02× (1−p) = p.

Var(Xi ) = p− (E(X ))2 = p−p2 = p(1−p).

p = 0 =⇒ Var(Xi ) = 0
p = 1 =⇒ Var(Xi ) = 0

X = X1 + X2 + . . .Xn.

Xi and Xj are independent: Pr [Xi = 1|Xj = 1] = Pr [Xi = 1].

Var(X ) = Var(X1 + · · ·Xn) = np(1−p).
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Poisson Distribution: Variance.

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with p = λ/n as n→ ∞.

Mean: pn = λ

Variance: p(1−p)n = λ −λ 2/n→ λ .

E(X 2)? Var(X ) = E(X 2)− (E(X ))2 or E(X 2) = Var(X ) + E(X )2.

E(X 2) = λ + λ 2.
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Covariance

Definition The covariance of X and Y is

cov(X ,Y ) := E [(X −E [X ])(Y −E [Y ])].

Fact
cov(X ,Y ) = E [XY ]−E [X ]E [Y ].

Proof:
Think about E [X ] = E [Y ] = 0. Just E [XY ]. ish.

For the sake of completeness.

E [(X −E [X ])(Y −E [Y ])] = E [XY −E [X ]Y −XE [Y ] + E [X ]E [Y ]]

= E [XY ]−E [X ]E [Y ]−E [X ]E [Y ] + E [X ]E [Y ]

= E [XY ]−E [X ]E [Y ].
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Correlation

Definition The correlation of X ,Y , Cor(X ,Y ) is

corr(X ,Y ) :
cov(X ,Y )

σ(X )σ(Y )
.

Theorem: −1≤ corr(X ,Y )≤ 1.
Proof: Idea: (a−b)2 > 0

→ a2 + b2 ≥ 2ab.

Simple case: E [X ] = E [Y ] = 0 and E [X 2] = E [Y 2] = 1.

Cor(X ,Y ) = E [XY ].

E [(X −Y )2] = E [X 2] + E [Y 2]−2E [XY ] = 2(1−E [XY ])≥ 0
→ E [XY ]≤ 1.

E [(X + Y )2] = E [X 2] + E [Y 2] + 2E [XY ] = 2(1 + E [XY ])≥ 0
→ E [XY ]≥−1.

Shifting and scaling doesn’t change correlation.
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Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y ) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y ) < 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.
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Examples of Covariance

E [X ] = 1×0.15 + 2×0.4 + 3×0.45 = 2.3
E [X 2] = 12×0.15 + 22×0.4 + 32×0.45 = 5.8
E [Y ] = 1×0.2 + 2×0.6 + 3×0.2 = 2
E [Y 2] = 1×0.2 + 4×0.6 + 9×0.2 = 4.4
E [XY ] = 1×0.05 + 1×2×0.1 + · · ·+ 3×3×0.2 = 4.85
cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = .25
var [X ] = E [X 2]−E [X ]2 = .51
var [Y ] = E [Y 2]−E [Y ]2 = .4
corr(X ,Y )≈ 0.55
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Properties of Covariance

cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] = E [XY ]−E [X ]E [Y ].

Fact
(a) var [X ] = cov(X ,X )
(b) X ,Y independent⇒ cov(X ,Y ) = 0
(c) cov(a + X ,b + Y ) = cov(X ,Y )
(d) cov(aX + bY ,cU + dV ) = ac ·cov(X ,U) + ad ·cov(X ,V )

+bc ·cov(Y ,U) + bd ·cov(Y ,V ).
Proof:
(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the
RVs are zero-mean. Then,

cov(aX + bY ,cU + dV ) = E [(aX + bY )(cU + dV )]

= ac ·E [XU] + ad ·E [XV ] + bc ·E [YU] + bd ·E [YV ]

= ac ·cov(X ,U) + ad ·cov(X ,V ) + bc ·cov(Y ,U) + bd ·cov(Y ,V ).
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Summary

Variance

I Variance: var [X ] := E [(X −E [X ])2] = E [X 2]−E [X ]2

I Fact: var [aX + b]a2var [X ]

I Sum: X ,Y ,Z pairwise ind. ⇒ var [X + Y + Z ] = · · ·
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Random Variables so far.

Probability Space: Ω, Pr : Ω→ [0,1], ∑ω∈Ω Pr(w) = 1.

Random Variables: X : Ω→ R.
Associated event: Pr [X = a] = ∑ω:X (ω)=a Pr(ω)

X and Y independent ⇐⇒ all associated events are independent.
Expectation: E [X ] = ∑a aPr [X = a] = ∑ω∈Ω X (ω)Pr(ω).

Linearity: E [X + Y ] = E [X ] + E [Y ].

Variance: Var(X ) = E [(X −E [X ])2] = E [X 2]− (E(X ))2

For independent X ,Y , Var(X + Y ) = Var(X ) + Var(Y ).
Also: Var(cX ) = c2Var(X ) and Var(X + b) = Var(X ).

Poisson: X ∼ P(λ ) E(X ) = λ , Var(X ) = λ .
Binomial: X ∼ B(n,p) E(X ) = np, Var(X ) = np(1−p)

Uniform: X ∼ U{1, . . . ,n} E [X ] = n+1
2 , Var(X ) = n2−1

12 .
Geometric: X ∼G(p) E(X ) = 1

p , Var(X ) = 1−p
p2
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