

Another Distribution: Poisson

Another Distribution:Poisson Variance/ Covariance.

Another Distribution:Poisson Variance/ Covariance.

McDonalds: How many person arrive in an hour?

McDonalds: How many person arrive in an hour? Know: average is λ .

McDonalds: How many person arrive in an hour? Know: average is λ . What is distribution?

McDonalds: How many person arrive in an hour?

Know: average is λ .

What is distribution?

Example: $Pr[2\lambda \text{ arrivals }]$?

McDonalds: How many person arrive in an hour?

Know: average is λ .

What is distribution?

```
Example: Pr[2\lambda \text{ arrivals }]?
```

Assumption: "arrivals are independent."

McDonalds: How many person arrive in an hour?

Know: average is λ .

What is distribution?

Example: $Pr[2\lambda \text{ arrivals }]$?

Assumption: "arrivals are independent."

Derivation: cut hour into *n* intervals of length 1/n.

McDonalds: How many person arrive in an hour?

Know: average is λ .

What is distribution?

Example: $Pr[2\lambda \text{ arrivals }]$?

Assumption: "arrivals are independent."

Derivation: cut hour into *n* intervals of length 1/n. *Pr*[two arrivals] is " $(\lambda/n)^2$ " or small if *n* is large.

McDonalds: How many person arrive in an hour?

Know: average is λ .

What is distribution?

Example: $Pr[2\lambda \text{ arrivals }]$?

Assumption: "arrivals are independent."

Derivation: cut hour into *n* intervals of length 1/n. *Pr*[two arrivals] is " $(\lambda/n)^2$ " or small if *n* is large. Model with binomial.

$$Pr[X = m] = {\binom{n}{m}}p^m(1-p)^{n-m}$$
, with $p =$

$$Pr[X = m] = {\binom{n}{m}}p^m(1-p)^{n-m}$$
, with $p = \lambda/n$

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$
$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

=
$$\frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

=
$$\frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^{m} (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^{m} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n$$

$$Pr[X = m] = {\binom{n}{m}} p^{m} (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^{m} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n} \approx \frac{\lambda^{m}}{m!} e^{-\lambda}.$$

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = {\binom{n}{m}} p^{m} (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^{m} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n} \approx \frac{\lambda^{m}}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$;

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = {\binom{n}{m}} p^{m} (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^{m} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n} \approx \frac{\lambda^{m}}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$; for (2) we used $(1 - a/n)^n \approx e^{-a}$.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Simeon Poisson

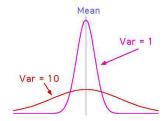
The Poisson distribution is named after:

Simeon Poisson

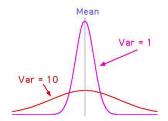
The Poisson distribution is named after:

Variance

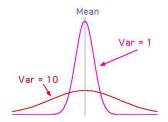
Variance



Variance

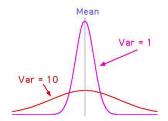


The variance measures the deviation from the mean value.



The variance measures the deviation from the mean value.

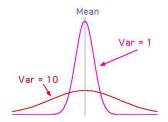
Definition: The variance of *X* is



The variance measures the deviation from the mean value.

Definition: The variance of X is

$$\sigma^{2}(X) := var[X] = E[(X - E[X])^{2}].$$

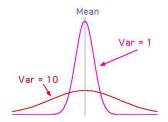


The variance measures the deviation from the mean value.

Definition: The variance of X is

$$\sigma^2(X) := var[X] = E[(X - E[X])^2].$$

 $\sigma(X)$ is called the standard deviation of *X*.



The variance measures the deviation from the mean value.

Definition: The variance of X is

$$\sigma^2(X) := var[X] = E[(X - E[X])^2].$$

 $\sigma(X)$ is called the standard deviation of *X*.

Fact:

$$var[X] = E[X^2] - E[X]^2.$$

Fact:

$$var[X] = E[X^2] - E[X]^2.$$

$$var(X) = E[(X - E[X])^2]$$

Fact:

$$var[X] = E[X^2] - E[X]^2.$$

$$var(X) = E[(X - E[X])^2]$$

= $E[X^2 - 2XE[X] + E[X]^2)$

Fact:

$$var[X] = E[X^2] - E[X]^2.$$

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2})$
= $E[X^{2}] - 2E[X]E[X] + E[X]^{2},$

Fact:

$$var[X] = E[X^2] - E[X]^2.$$

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2})$
= $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$, by linearity

Fact:

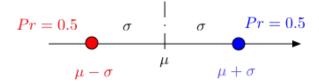
$$var[X] = E[X^2] - E[X]^2.$$

$$var(X) = E[(X - E[X])^{2}]$$

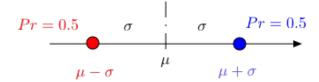
= $E[X^{2} - 2XE[X] + E[X]^{2})$
= $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$, by linearity
= $E[X^{2}] - E[X]^{2}$.

This example illustrates the term 'standard deviation.'

This example illustrates the term 'standard deviation.'



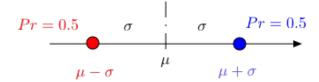
This example illustrates the term 'standard deviation.'



Consider the random variable X such that

$$X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2\\ \mu + \sigma, & \text{w.p. } 1/2 \end{cases}$$

This example illustrates the term 'standard deviation.'

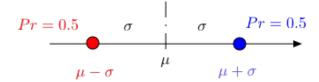


Consider the random variable X such that

$$X = \left\{egin{array}{cc} \mu - \sigma, & ext{w.p. 1/2} \ \mu + \sigma, & ext{w.p. 1/2}. \end{array}
ight.$$

Then, $E[X] = \mu$ and $(X - E[X])^2 = \sigma^2$.

This example illustrates the term 'standard deviation.'



Consider the random variable X such that

$$X = \left\{egin{array}{cc} \mu - \sigma, & ext{w.p. 1/2} \ \mu + \sigma, & ext{w.p. 1/2}. \end{array}
ight.$$

Then, $E[X] = \mu$ and $(X - E[X])^2 = \sigma^2$. Hence,

$$var(X) = \sigma^2$$
 and $\sigma(X) = \sigma^2$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01} \end{cases}$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01}. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01}. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

$$E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01}. \end{cases}$$

Then

$$\begin{split} E[X] &= -1 \times 0.99 + 99 \times 0.01 = 0. \\ E[X^2] &= 1 \times 0.99 + (99)^2 \times 0.01 \approx 100. \\ Var(X) &\approx 100 \implies \sigma(X) \approx 10. \end{split}$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01.} \end{cases}$$

Then

$$\begin{array}{rcl} E[X] &=& -1 \times 0.99 + 99 \times 0.01 = 0. \\ E[X^2] &=& 1 \times 0.99 + (99)^2 \times 0.01 \approx 100. \\ Var(X) &\approx& 100 \implies \sigma(X) \approx 10. \end{array}$$

$$E(|X|) = 1 \times 0.99 + 99 \times 0.01 = 1.98.$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01.} \end{cases}$$

Then

$$\begin{array}{rcl} E[X] &=& -1 \times 0.99 + 99 \times 0.01 = 0. \\ E[X^2] &=& 1 \times 0.99 + (99)^2 \times 0.01 \approx 100. \\ Var(X) &\approx& 100 \implies \sigma(X) \approx 10. \end{array}$$

Also,

$$E(|X|) = 1 \times 0.99 + 99 \times 0.01 = 1.98.$$

Thus, $\sigma(X) = \sqrt{E[(X - E(X))^2]} \neq E[|X - E[X]|]!$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01.} \end{cases}$$

Then

$$\begin{array}{rcl} E[X] &=& -1 \times 0.99 + 99 \times 0.01 = 0. \\ E[X^2] &=& 1 \times 0.99 + (99)^2 \times 0.01 \approx 100. \\ Var(X) &\approx& 100 \implies \sigma(X) \approx 10. \end{array}$$

$$E(|X|) = 1 \times 0.99 + 99 \times 0.01 = 1.98.$$

Thus, $\sigma(X) = \sqrt{E[(X - E(X))^2]} \neq E[|X - E[X]|]!$
Exercise: How big can you make $\frac{\sigma(X)}{E[|X - E[X]|]}$?

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

$$E[X^{2}] = \sum_{i=1}^{n} i^{2} Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

$$E[X^2] = \sum_{i=1}^n i^2 \Pr[X=i] = \frac{1}{n} \sum_{i=1}^n i^2$$
$$= \frac{1}{n} \frac{(n)(n+1)(n+2)}{6} = \frac{1+3n+2n^2}{6},$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

$$E[X^2] = \sum_{i=1}^n i^2 \Pr[X=i] = \frac{1}{n} \sum_{i=1}^n i^2$$
$$= \frac{1}{n} \frac{(n)(n+1)(n+2)}{6} = \frac{1+3n+2n^2}{6}, \text{ as you can verify.}$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Also,

$$E[X^2] = \sum_{i=1}^n i^2 \Pr[X=i] = \frac{1}{n} \sum_{i=1}^n i^2$$

= $\frac{1}{n} \frac{(n)(n+1)(n+2)}{6} = \frac{1+3n+2n^2}{6}$, as you can verify.

This gives

$$var(X) = \frac{1+3n+2n^2}{6} - \frac{(n+1)^2}{4} = \frac{n^2-1}{12}.$$
(Sort of $\int_0^{1/2} x^2 dx = \frac{x^3}{3}.$)

X is a geometrically distributed RV with parameter p.

$$E[X^2] = \rho + 4\rho(1-\rho) + 9\rho(1-\rho)^2 + ...$$

$$E[X^2] = p + 4p(1-p) + 9p(1-p)^2 + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^2 + \dots]

$$E[X^2] = p + 4p(1-p) + 9p(1-p)^2 + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^2 + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^2 + \dots

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X^{2}] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X^{2}] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + ...$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + ...]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + ...
= 2(p+2p(1-p) + 3p(1-p)^{2} + ...) E[X]!
-(p+p(1-p) + p(1-p)^{2} + ...) Distribution.
pE[X²] = 2E[X] - 1

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X^{2}] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X^{2}] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
$$pE[X^{2}] = 2E[X] - 1$$

= 2($\frac{1}{p}$) - 1

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X^{2}] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X^{2}] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X^{2}] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \ge 1$. Recall E[X] = 1/p.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

 $\implies E[X^2] = (2-p)/p^2$

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \ge 1$. Recall E[X] = 1/p.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

 $\implies E[X^2] = (2-p)/p^2$ and $var[X] = E[X^2] - E[X]^2$

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

$$\implies E[X^2] = (2-p)/p^2 \text{ and } \\ var[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2}$$

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

$$\implies E[X^{2}] = (2-p)/p^{2} \text{ and} var[X] = E[X^{2}] - E[X]^{2} = \frac{2-p}{p^{2}} - \frac{1}{p^{2}} = \frac{1-p}{p^{2}} \cdot \sigma(X) = \frac{\sqrt{1-p}}{p}$$

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X²] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) Distribution.
pE[X²] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

Number of fixed points in a random permutation of *n* items.

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

 $X = X_1 + X_2 \cdots + X_n$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

 $X = X_1 + X_2 \cdots + X_n$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X=X_1+X_2\cdots+X_n$$

$$E(X^2) = \sum_i E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$

= +

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_i E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= +$$

$$E(X_i^2) = 1 \times \Pr[X_i = 1] + 0 \times \Pr[X_i = 0]$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_{i} E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$
$$= \frac{1}{n}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_{i} E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$
$$= \frac{1}{n}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_{i} E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= n \times \frac{1}{n} +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$
$$= \frac{1}{n}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_i E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= n \times \frac{1}{n} +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$

= $\frac{1}{n}$
$$E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr[$$
 "anything else"]

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_{i} E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= n \times \frac{1}{n} +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$

= $\frac{1}{n}$
$$E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr[$$
 "anything else"]
= $1 \times \frac{(n-2)!}{n!}$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_{i} E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$
$$= n \times \frac{1}{n} +$$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0] = \frac{1}{n} E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr["anything else"] = 1 \times \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^2) = \sum_i E(X_i^2) + \sum_{i \neq j} E(X_i X_j).$$

= $n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)}$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0] = \frac{1}{n} E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr["anything else"] = 1 \times \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^{2}) = \sum_{i} E(X_{i}^{2}) + \sum_{i \neq j} E(X_{i}X_{j}).$$

= $n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)}$
= $1 + 1 = 2.$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0] = \frac{1}{n} E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr["anything else"] = 1 \times \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$$

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X = X_1 + X_2 \cdots + X_n$$

$$E(X^{2}) = \sum_{i} E(X_{i}^{2}) + \sum_{i \neq j} E(X_{i}X_{j}).$$

= $n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)}$
= $1 + 1 = 2.$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$

= $\frac{1}{n}$
 $E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr[$ "anything else"]
= $1 \times \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}$
 $Var(X) = E(X^2) - (E(X))^2 = 2 - 1 = 1.$

$$E[X^2] = \sum_{i=0}^n i^2 {n \choose i} p^i (1-p)^{n-i}.$$

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok..

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine.

$$E[X^2] = \sum_{i=0}^n i^2 {n \choose i} p^i (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine. Let's do something else.

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine. Let's do something else. Maybe not much easier...

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine. Let's do something else. Maybe not much easier...but there is a payoff.

Properties of variance.

1. $Var(cX) = c^2 Var(X)$, where c is a constant.

Properties of variance.

1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant.

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2 = c^2 E(X^2) - c^2 (E(X))^2$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

= $c^2 E(X^2) - c^2 (E(X))^2 = c^2 (E(X^2) - E(X)^2)$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

= $c^2 E(X^2) - c^2 (E(X))^2 = c^2 (E(X^2) - E(X)^2)$
= $c^2 Var(X)$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
 $Var(X+c) = E((X+c-E(X+c))^{2})$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
$$Var(X+c) = E((X+c-E(X+c))^{2})$$

= $E((X+c-E(X)-c)^{2})$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
$$Var(X+c) = E((X+c-E(X+c))^{2})$$

= $E((X+c-E(X)-c)^{2})$
= $E((X-E(X))^{2})$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
$$Var(X+c) = E((X+c-E(X+c))^{2})$$

= $E((X+c-E(X)-c)^{2})$
= $E((X-E(X))^{2}) = Var(X)$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
$$Var(X+c) = E((X+c-E(X+c))^{2})$$

= $E((X+c-E(X)-c)^{2})$
= $E((X-E(X))^{2}) = Var(X)$

Independent random variables.

Independent: P[X = a, Y = b] = Pr[X = a]Pr[Y = b]

Independent random variables.

Independent: P[X = a, Y = b] = Pr[X = a]Pr[Y = b]

Fact: E[XY] = E[X]E[Y] for independent random variables.

Independent random variables.

Independent: P[X = a, Y = b] = Pr[X = a]Pr[Y = b]

Fact: E[XY] = E[X]E[Y] for independent random variables.

$$E[XY] = \sum_{a} \sum_{b} a \times b \times PR[X = a, Y = b]$$

=
$$\sum_{a} \sum_{b} a \times b \times PR[X = a]Pr[Y = b]$$

=
$$(\sum_{a} aPr[X = a])(\sum_{b} bPr[Y = b])$$

=
$$E[X]E[Y]$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2)$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2+2XY+Y^2)$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2)$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$
= $var(X) + var(Y)$.

If X, Y, Z, \ldots are pairwise independent, then

 $var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

E[XY] = E[X]E[Y] = 0.

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X+Y+Z+\cdots) = E((X+Y+Z+\cdots)^2)$$

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2)$$

= $E(X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots)$

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2)$$

= $E(X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots)$
= $E(X^2) + E(Y^2) + E(Z^2) + \cdots + 0 + \cdots + 0$

If X, Y, Z, \ldots are pairwise independent, then

$$var(X+Y+Z+\cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2)$$

= $E(X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots)$
= $E(X^2) + E(Y^2) + E(Z^2) + \cdots + 0 + \cdots + 0$
= $var(X) + var(Y) + var(Z) + \cdots$.

Variance of Binomial Distribution.

Flip coin with heads probability *p*.

Variance of Binomial Distribution.

Flip coin with heads probability *p*. *X*- how many heads?

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E(X_i^2)$

Flip coin with heads probability *p*. *X*- how many heads?

 $X_{i} = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$

 $E(X_i^2) = 1^2 \times p + 0^2 \times (1-p)$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E(X_i^2) = 1^2 \times p + 0^2 \times (1-p) = p.$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1-p) = p.$$

Var $(X_i) = p - (E(X))^2$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

Var(X_i) = p - (E(X))^2 = p - p^2

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

 $Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).
p = 0

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

Flip coin with heads probability *p*. *X*- how many heads?

 $X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1-p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1-p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

 X_i and X_j are independent:

Flip coin with heads probability *p*. *X*- how many heads?

$$\begin{split} E(X_i^2) &= 1^2 \times p + 0^2 \times (1 - p) = p. \\ Var(X_i) &= p - (E(X))^2 = p - p^2 = p(1 - p). \\ p &= 0 \implies Var(X_i) = 0 \\ p &= 1 \implies Var(X_i) = 0 \\ X &= X_1 + X_2 + \dots + X_n. \\ X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1]. \end{split}$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots X_n.$$

$$X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$$

$$Var(X) = Var(X_1 + \dots + X_n)$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

$$X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$$

$$Var(X) = Var(X_1 + \cdots + X_n) = np(1-p).$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

$$X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$$

$$Var(X) = Var(X_1 + \cdots + X_n) = np(1-p).$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = rac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = rac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$. Mean: $pn = \lambda$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$. Mean: $pn = \lambda$

Variance: $p(1-p)n = \lambda - \lambda^2/n \rightarrow \lambda$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$. Mean: $pn = \lambda$

Variance: $p(1-p)n = \lambda - \lambda^2/n \rightarrow \lambda$.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = rac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda / n$ as $n \to \infty$.

```
Mean: pn = \lambda
Variance: p(1-p)n = \lambda - \lambda^2/n \rightarrow \lambda.
E(X^2)?
```

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$. Mean: $pn = \lambda$ Variance: $p(1-p)n = \lambda - \lambda^2/n \to \lambda$. $E(X^2)$? $Var(X) = E(X^2) - (E(X))^2$ or $E(X^2) = Var(X) + E(X)^2$.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$. Mean: $pn = \lambda$ Variance: $p(1-p)n = \lambda - \lambda^2/n \to \lambda$. $E(X^2)$? $Var(X) = E(X^2) - (E(X))^2$ or $E(X^2) = Var(X) + E(X)^2$. $E(X^2) = \lambda + \lambda^2$.

Definition The covariance of *X* and *Y* is

cov(X, Y) := E[(X - E[X])(Y - E[Y])].

Definition The covariance of *X* and *Y* is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$

Definition The covariance of *X* and *Y* is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$

Proof: Think about E[X] = E[Y] = 0. Just E[XY].

Definition The covariance of *X* and *Y* is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$

Proof: Think about E[X] = E[Y] = 0. Just E[XY].

Definition The covariance of *X* and *Y* is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$

Proof: Think about E[X] = E[Y] = 0. Just E[XY].

Definition The covariance of *X* and *Y* is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$

Proof:

Think about E[X] = E[Y] = 0. Just E[XY].

For the sake of completeness.

Definition The covariance of *X* and *Y* is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$

Proof:

Think about E[X] = E[Y] = 0. Just E[XY].

For the sake of completeness.

$$\begin{split} & E[(X - E[X])(Y - E[Y])] = E[XY - E[X]Y - XE[Y] + E[X]E[Y]] \\ & = E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y] \\ & = E[XY] - E[X]E[Y]. \end{split}$$

□ish.

Correlation

Definition The correlation of X, Y, Cor(X, Y) is

$$corr(X, Y) : \frac{cov(X, Y)}{\sigma(X)\sigma(Y)}.$$

Theorem: $-1 \le corr(X, Y) \le 1$. Proof: Idea: $(a-b)^2 > 0$

Definition The correlation of X, Y, Cor(X, Y) is

$$corr(X, Y) : rac{cov(X, Y)}{\sigma(X)\sigma(Y)}.$$

Theorem: $-1 \le corr(X, Y) \le 1$. **Proof:** Idea: $(a-b)^2 > 0 \rightarrow a^2 + b^2 \ge 2ab$.

Definition The correlation of X, Y, Cor(X, Y) is

$$corr(X, Y)$$
 : $\frac{cov(X, Y)}{\sigma(X)\sigma(Y)}$.

Theorem: $-1 \le corr(X, Y) \le 1$. **Proof:** Idea: $(a-b)^2 > 0 \rightarrow a^2 + b^2 \ge 2ab$. Simple case: E[X] = E[Y] = 0 and $E[X^2] = E[Y^2] = 1$.

Definition The correlation of X, Y, Cor(X, Y) is

$$corr(X, Y)$$
: $\frac{cov(X, Y)}{\sigma(X)\sigma(Y)}$.

Theorem: $-1 \le corr(X, Y) \le 1$. **Proof:** Idea: $(a-b)^2 > 0 \rightarrow a^2 + b^2 \ge 2ab$. Simple case: E[X] = E[Y] = 0 and $E[X^2] = E[Y^2] = 1$. Cor(X, Y) = E[XY].

Definition The correlation of X, Y, Cor(X, Y) is

$$corr(X, Y)$$
 : $\frac{cov(X, Y)}{\sigma(X)\sigma(Y)}$.

Theorem: $-1 \le corr(X, Y) \le 1$. **Proof:** Idea: $(a-b)^2 > 0 \rightarrow a^2 + b^2 \ge 2ab$. Simple case: E[X] = E[Y] = 0 and $E[X^2] = E[Y^2] = 1$. Cor(X, Y) = E[XY]. $E[(X - Y)^2] = E[X^2] + E[Y^2] - 2E[XY] = 2(1 - E[XY]) \ge 0$

Definition The correlation of X, Y, Cor(X, Y) is

$$corr(X, Y)$$
 : $\frac{cov(X, Y)}{\sigma(X)\sigma(Y)}$.

Theorem: $-1 \le corr(X, Y) \le 1$. Proof: Idea: $(a-b)^2 > 0 \rightarrow a^2 + b^2 \ge 2ab$. Simple case: E[X] = E[Y] = 0 and $E[X^2] = E[Y^2] = 1$. Cor(X, Y) = E[XY]. $E[(X - Y)^2] = E[X^2] + E[Y^2] - 2E[XY] = 2(1 - E[XY]) \ge 0$ $\rightarrow E[XY] \le 1$.

Definition The correlation of X, Y, Cor(X, Y) is

$$corr(X, Y)$$
: $\frac{cov(X, Y)}{\sigma(X)\sigma(Y)}$.

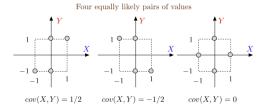
 $\begin{array}{l} \text{Theorem:} \ -1 \leq corr(X,Y) \leq 1.\\ \text{Proof: Idea:} \ (a-b)^2 > 0 \rightarrow a^2 + b^2 \geq 2ab.\\ \text{Simple case:} \ E[X] = E[Y] = 0 \ \text{and} \ E[X^2] = E[Y^2] = 1.\\ \text{Cor}(X,Y) = E[XY].\\ E[(X-Y)^2] = E[X^2] + E[Y^2] - 2E[XY] = 2(1 - E[XY]) \geq 0\\ \rightarrow E[XY] \leq 1.\\ E[(X+Y)^2] = E[X^2] + E[Y^2] + 2E[XY] = 2(1 + E[XY]) \geq 0 \end{array}$

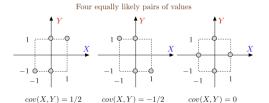
Definition The correlation of X, Y, Cor(X, Y) is

$$corr(X, Y)$$
: $\frac{cov(X, Y)}{\sigma(X)\sigma(Y)}$.

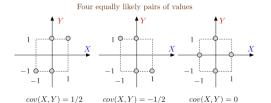
 $\begin{array}{l} \textbf{Theorem:} \ -1 \leq corr(X,Y) \leq 1.\\ \textbf{Proof:} \ \text{Idea:} \ (a-b)^2 > 0 \rightarrow a^2 + b^2 \geq 2ab.\\ \text{Simple case:} \ E[X] = E[Y] = 0 \ \text{and} \ E[X^2] = E[Y^2] = 1.\\ Cor(X,Y) = E[XY].\\ E[(X-Y)^2] = E[X^2] + E[Y^2] - 2E[XY] = 2(1 - E[XY]) \geq 0\\ \rightarrow E[XY] \leq 1.\\ E[(X+Y)^2] = E[X^2] + E[Y^2] + 2E[XY] = 2(1 + E[XY]) \geq 0\\ \rightarrow E[XY] \geq -1. \end{array}$

Shifting and scaling doesn't change correlation.



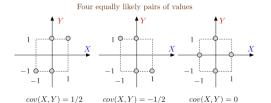


Note that E[X] = 0 and E[Y] = 0 in these examples. Then cov(X, Y) = E[XY].



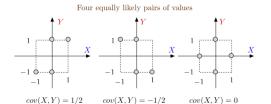
Note that E[X] = 0 and E[Y] = 0 in these examples. Then cov(X, Y) = E[XY].

When cov(X, Y) > 0, the RVs X and Y tend to be large or small together.



Note that E[X] = 0 and E[Y] = 0 in these examples. Then cov(X, Y) = E[XY].

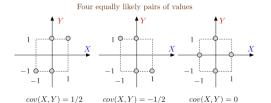
When cov(X, Y) > 0, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.



Note that E[X] = 0 and E[Y] = 0 in these examples. Then cov(X, Y) = E[XY].

When cov(X, Y) > 0, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.

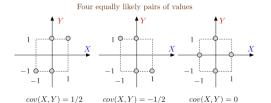
When cov(X, Y) < 0, when X is larger, Y tends to be smaller.



Note that E[X] = 0 and E[Y] = 0 in these examples. Then cov(X, Y) = E[XY].

When cov(X, Y) > 0, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.

When cov(X, Y) < 0, when X is larger, Y tends to be smaller. X and Y are said to be negatively correlated.

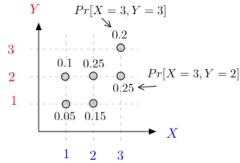


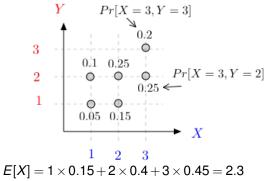
Note that E[X] = 0 and E[Y] = 0 in these examples. Then cov(X, Y) = E[XY].

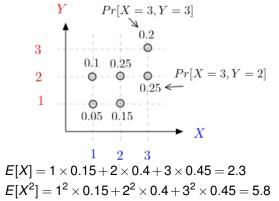
When cov(X, Y) > 0, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.

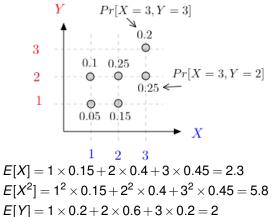
When cov(X, Y) < 0, when X is larger, Y tends to be smaller. X and Y are said to be negatively correlated.

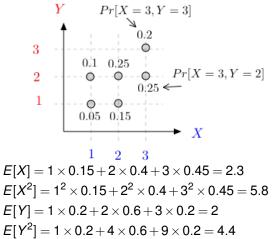
When cov(X, Y) = 0, we say that X and Y are uncorrelated.

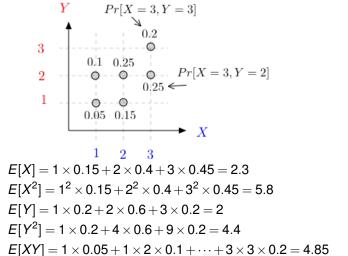


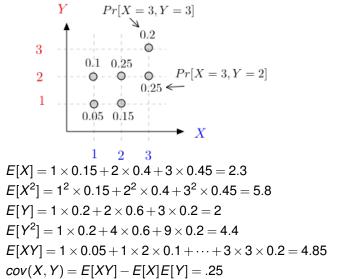


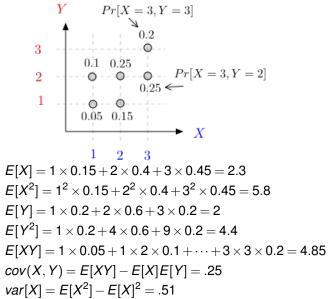


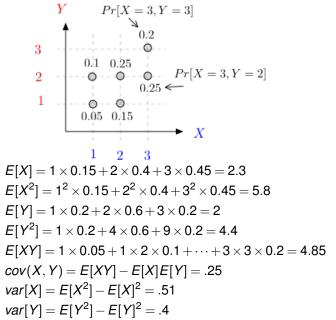


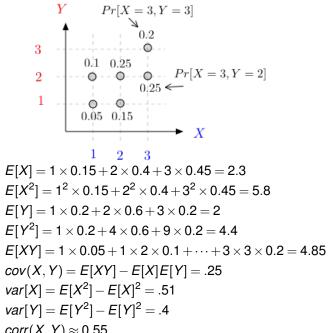


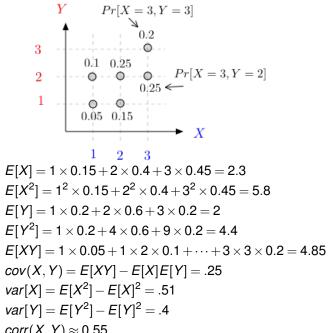












cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact (a) var[X] = cov(X, X)

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact

(a) var[X] = cov(X, X)(b) X, Y independent $\Rightarrow cov(X, Y) =$

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact

(a) var[X] = cov(X, X)(b) X, Y independent $\Rightarrow cov(X, Y) = 0$

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact

(a) var[X] = cov(X, X)(b) X, Y independent $\Rightarrow cov(X, Y) = 0$ (c) cov(a+X, b+Y) = cov(X, Y)

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact

(a)
$$var[X] = cov(X, X)$$

(b) X, Y independent $\Rightarrow cov(X, Y) = 0$
(c) $cov(a+X, b+Y) = cov(X, Y)$
(d) $cov(aX+bY, cU+dV) = ac \cdot cov(X, U) + ad \cdot cov(X, V)$
 $+bc \cdot cov(Y, U) + bd \cdot cov(Y, V).$

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact

(a)
$$var[X] = cov(X, X)$$

(b) X, Y independent $\Rightarrow cov(X, Y) = 0$
(c) $cov(a+X, b+Y) = cov(X, Y)$
(d) $cov(aX+bY, cU+dV) = ac \cdot cov(X, U) + ad \cdot cov(X, V)$
 $+bc \cdot cov(Y, U) + bd \cdot cov(Y, V).$

Proof:

(a)-(b)-(c) are obvious.

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact

(a)
$$var[X] = cov(X, X)$$

(b) X, Y independent $\Rightarrow cov(X, Y) = 0$
(c) $cov(a+X, b+Y) = cov(X, Y)$
(d) $cov(aX+bY, cU+dV) = ac \cdot cov(X, U) + ad \cdot cov(X, V)$
 $+bc \cdot cov(Y, U) + bd \cdot cov(Y, V).$

Proof:

(a)-(b)-(c) are obvious.

(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean.

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact

(a) var[X] = cov(X, X)(b) X, Y independent $\Rightarrow cov(X, Y) = 0$ (c) cov(a+X, b+Y) = cov(X, Y)(d) $cov(aX+bY, cU+dV) = ac \cdot cov(X, U) + ad \cdot cov(X, V)$ $+bc \cdot cov(Y, U) + bd \cdot cov(Y, V).$

Proof:

(a)-(b)-(c) are obvious.

(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

cov(aX+bY, cU+dV) = E[(aX+bY)(cU+dV)]

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact

(a) var[X] = cov(X, X)(b) X, Y independent $\Rightarrow cov(X, Y) = 0$ (c) cov(a+X, b+Y) = cov(X, Y)(d) $cov(aX+bY, cU+dV) = ac \cdot cov(X, U) + ad \cdot cov(X, V)$ $+bc \cdot cov(Y, U) + bd \cdot cov(Y, V).$

Proof:

(a)-(b)-(c) are obvious.

(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

$$cov(aX+bY,cU+dV) = E[(aX+bY)(cU+dV)]$$
$$= ac \cdot E[XU] + ad \cdot E[XV] + bc \cdot E[YU] + bd \cdot E[YV]$$

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact

(a) var[X] = cov(X, X)(b) X, Y independent $\Rightarrow cov(X, Y) = 0$ (c) cov(a+X, b+Y) = cov(X, Y)(d) $cov(aX+bY, cU+dV) = ac \cdot cov(X, U) + ad \cdot cov(X, V)$ $+bc \cdot cov(Y, U) + bd \cdot cov(Y, V).$

Proof:

(a)-(b)-(c) are obvious.

(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

$$cov(aX + bY, cU + dV) = E[(aX + bY)(cU + dV)]$$

= $ac \cdot E[XU] + ad \cdot E[XV] + bc \cdot E[YU] + bd \cdot E[YV]$
= $ac \cdot cov(X, U) + ad \cdot cov(X, V) + bc \cdot cov(Y, U) + bd \cdot cov(Y, V).$

Properties of Covariance

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y].$$

Fact

(a) var[X] = cov(X, X)(b) X, Y independent $\Rightarrow cov(X, Y) = 0$ (c) cov(a+X, b+Y) = cov(X, Y)(d) $cov(aX+bY, cU+dV) = ac \cdot cov(X, U) + ad \cdot cov(X, V)$ $+bc \cdot cov(Y, U) + bd \cdot cov(Y, V).$

Proof:

(a)-(b)-(c) are obvious.

(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

$$cov(aX + bY, cU + dV) = E[(aX + bY)(cU + dV)]$$

= $ac \cdot E[XU] + ad \cdot E[XV] + bc \cdot E[YU] + bd \cdot E[YV]$
= $ac \cdot cov(X, U) + ad \cdot cov(X, V) + bc \cdot cov(Y, U) + bd \cdot cov(Y, V).$

• Variance:
$$var[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2$$

Summary

- Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b]a^2var[X]$

Summary

- Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b]a^2var[X]$
- Sum: X, Y, Z pairwise ind. $\Rightarrow var[X + Y + Z] = \cdots$

Summary

- Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b]a^2var[X]$
- Sum: X, Y, Z pairwise ind. $\Rightarrow var[X + Y + Z] = \cdots$

Probability Space: Ω , $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$.

Probability Space: Ω , $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \rightarrow R$.

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega)$

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega)$ X and Y independent \iff all associated events are independent.

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$.

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent *X*, *Y*, Var(X + Y) = Var(X) + Var(Y).

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent X, Y, Var(X + Y) = Var(X) + Var(Y). Also: $Var(cX) = c^2 Var(X)$ and Var(X + b) = Var(X).

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y]. Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent X, Y, Var(X + Y) = Var(X) + Var(Y).

Also: $Var(cX) = c^2 Var(X)$ and Var(X+b) = Var(X).

Poisson: $X \sim P(\lambda)$

Probability Space: Ω , $Pr : \Omega \to [0,1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance:
$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda) E(X) = \lambda$, $Var(X) = \lambda$.

Probability Space: Ω , $Pr: \Omega \to [0,1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X: \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance:
$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda) E(X) = \lambda$, $Var(X) = \lambda$. Binomial: $X \sim B(n,p)$

Probability Space: Ω , $Pr: \Omega \to [0,1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X: \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent X, Y, Var(X + Y) = Var(X) + Var(Y). Also: $Var(cX) = c^2 Var(X)$ and Var(X + b) = Var(X).

Poisson: $X \sim P(\lambda) E(X) = \lambda$, $Var(X) = \lambda$. Binomial: $X \sim B(n,p) E(X) = np$, Var(X) = np(1-p)

Probability Space: Ω , $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X : \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y]. Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] = (E(X))^2$

Variance:
$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda) E(X) = \lambda$, $Var(X) = \lambda$. Binomial: $X \sim B(n,p) E(X) = np$, Var(X) = np(1-p)Uniform: $X \sim U\{1,...,n\}$

Probability Space: Ω , $Pr: \Omega \to [0,1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X: \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance:
$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda) E(X) = \lambda$, $Var(X) = \lambda$. Binomial: $X \sim B(n,p) E(X) = np$, Var(X) = np(1-p)Uniform: $X \sim U\{1,...,n\} E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$.

Probability Space: Ω , $Pr: \Omega \to [0,1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X: \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent X, Y, Var(X + Y) = Var(X) + Var(Y). Also: $Var(cX) = c^2 Var(X)$ and Var(X + b) = Var(X).

Poisson: $X \sim P(\lambda) E(X) = \lambda$, $Var(X) = \lambda$. Binomial: $X \sim B(n,p) E(X) = np$, Var(X) = np(1-p)Uniform: $X \sim U\{1,...,n\} E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$. Geometric: $X \sim G(p)$

Probability Space: Ω , $Pr: \Omega \to [0,1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X: \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance:
$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

Poisson: $X \sim P(\lambda) E(X) = \lambda$, $Var(X) = \lambda$. Binomial: $X \sim B(n,p) E(X) = np$, Var(X) = np(1-p)Uniform: $X \sim U\{1,...,n\} E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$. Geometric: $X \sim G(p) E(X) = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$