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McDonalds: How many person arrive in an hour?
Know: average is 1.
What is distribution?
Example: Pr[2A arrivals |?
Assumption: “arrivals are independent.”

Derivation: cut hour into n intervals of length 1/n.
Pr[ two arrivals ] is “(A/n)2” or small if n is large.
Model with binomial.
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The Poisson distribution is named after:

Siméon Poisson

Siméon Denis Poisson (1781-1840)
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Fact:

Indeed:

var(X)

var[X] = E[X?] - E[X]?.

E[(X - E[X])?]
E[X? —2XE[X]+ E[X]?)
E[X?] - 2E[X]E[X] + E[X]?, by linearity

= E[X?]-E[X]?.



A simple example

This example illustrates the term ‘standard deviation.



A simple example

This example illustrates the term ‘standard deviation.

I
Pr=10.5 T . a Pr=10.5
O | O -
L
= I




A simple example

This example illustrates the term ‘standard deviation.

|
Pr=10.5 T . T Pr=10.5
O | O -

7
f—a I

Consider the random variable X such that

x_| p-o w.p. 1/2
| u+o, wp1/2



A simple example

This example illustrates the term ‘standard deviation.
Pr=10.5 T . el Pr=10.5

® ! O >

I
H—a nw+a

Consider the random variable X such that

x_| p-o w.p. 1/2
| u+o, wp1/2

Then, E[X] = and (X — E[X])? = 2.
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This example illustrates the term ‘standard deviation.
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Consider the random variable X such that

x_| p-o w.p. 1/2
| u+o, wp1/2

Then, E[X] = u and (X — E[X])? = 62. Hence,

var(X) = 6® and 6(X) = o.
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Consider X with
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1 99, w.p.0.01.
Then
E[X] = —1x0.99+99x0.01=0.

E[X?] = 1x0.99+(99)%x0.01 = 100.

Var(X) =~ 100 = o(X)~10.
Also,

E(1X|)=1x0.99+99 x0.01 = 1.98.
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Exercise: How big can you make %?
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Uniform
Assume that Pr[X =i]=1/nforie{1,...,n}. Then

n n
EX] = Yix Pr[X:i]:%Zi
i=1 i=1
1n(n+1) n+1
n 2 2
Also,
n n
E[X?] = Y. PPriX=i=- ZF
=1 S
1 2
_ 7( )(n+1)(n+2) = 1+3n+2n , as you can verify.
n 6 6
This gives
2 2 2 _
var(x) = 1E8n+2m  (n+1)7

6 T4 T 12
(Sort of f)/2x2dx = )
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Fixed points.

Number of fixed points in a random permutation of n items.
“Number of student that get homework back.”
X=X1+X5---+ X

where X; is indicator variable for ith student getting hw back.

E(X?) = Y EXP)+Y E(XX).
i i#]

= nx%+(n)(n—1)>< n(n=1)
= 1+1=2

E(X?) = 11><Pr[X,-: 1]+0x Pr[X; =0]

E(X:X) =1 x Pr([x,; 11X = 1]+0 x Pr[“anything else”]
n!
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Fixed points.

Number of fixed points in a random permutation of n items.
“Number of student that get homework back.”

X=X1+X5---+ X
where X; is indicator variable for ith student getting hw back.

E(X?) = Y EXP)+Y E(XX).
i i#]

= nx%+(n)(n—1)>< n(n=1)
= 1+1=2

E(X?)=1x Pr[X;=1]+0x Pr[X; =0]
_1
E(X;X)) =1 x Pr[X; = 11X = 1]+ 0 x Pr[“anything else”]

_ (n—2)! A1
=1x n 7 n(n-1)

Var(X) = E(X?) — (E(X)2 =2—1=1.
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Variance: binomial.

2 N ) n ; i
e = Y A(T)e -
i=0
= Really???!1##...

Too hard!

Ok.. fine.
Let’'s do something else.
Maybe not much easier...but there is a payoff.
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Proof:
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Independent random variables.

Independent: P[X =a,Y = b] = Pr[X = a]Pr[Y = b]
Fact: E[XY] = E[X]E[Y] for independent random variables.

E[XY] = Y Y axbxPRX=a,Y=b]|
ab
= Y'Y axbx PR[X = aPr[Y = b]
a b

= () aPriX = al)(}_bPr[Y = b))
a b

- E[X]E[Y]
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Theorem:
If X and Y are independent, then

Var(X +Y) = Var(X) + Var(Y).

Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E(X) =0and E(Y) =0.
Then, by independence,

E(XY) = E(X)E(Y)=0.

Hence,
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Variance of sum of independent random variables
Theorem:
If X,Y,Z,... are pairwise independent, then
var(X+Y+Z+---)=var(X)+var(Y)+var(Z)+---.

Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E[X] = E[Y]=---=0.
Then, by independence,
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Variance of sum of independent random variables
Theorem:
If X,Y,Z,... are pairwise independent, then
var(X+Y+Z+---)=var(X)+var(Y)+var(Z)+---.

Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E[X] = E[Y]=---=0.
Then, by independence,
E[XY] = E[X]E[Y] = 0. Also, E[XZ] = E[YZ] = --- =0.

Hence,

var(X+Y+2Z+---) = E(X+Y+Z+---)?)
= E(XP4+ Y24 224 42XY +2XZ+2YZ + )
= E(X®)+E(Y?)+E(Z%)+--+0+---+0
= var(X)+var(Y)+var(Z)+---
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Flip coin with heads probability p.
X- how many heads?

x 11 if ith flip is heads
710 otherwise
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Xj and X; are independent: Pr[X; =1[|X; = 1] = Pr[X; =1].

Var(X) = Var(X1 +--- Xn) = np(1 —p).
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Poisson Distribution: Variance.

Definition Poisson Distribution with parameter A > 0

m

xzpuyﬁmw:mp%ﬁa%m>a

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with p=24/nas n— eo.
Mean: pn=A

Variance: p(1—p)n=21—212/n— A .

E(X?)? Var(X) = E(X?)— (E(X))? or E(X?) = Var(X) + E(X)?.
E(X?)=A+A%.
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Definition The covariance of X and Y is

cov(X,Y) = E[(X — E[X])(Y — E[Y])].

Fact
cov(X,Y)= E[XY]— E[X]E[Y].
Proof:
Think about E[X] = E[Y] = 0. Just E[XY]. Clish.

For the sake of completeness.

E[(X — E[X])(Y — E[Y])] = E[XY — E[X]Y — XE[Y] + E[X]E[Y]]
= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]
= E[XY] - E[X]E[Y].
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Correlation

Definition The correlation of X, Y, Cor(X,Y) is

cov(X,Y)

corr(X,Y): (X)o (V)"

Theorem: —1 < corr(X,Y) < 1.
Proof: Idea: (a— b)? >0 — & + b? > 2ab.

Simple case: E[X] = E[Y] =0 and E[X?] = E[Y?] =1.
Cor(X,Y) = E[XY].

E[(X — Y)?] = E[X?] + E[Y?] - 2E[XY] = 2(1 — E[XY]) > 0

— E[XY] <1.

E[(X+ Y)?] = E[X?] + E[Y2]+2E[XY] =2(1 + E[XY]) >

— E[XY] > 1.

Shifting and scaling doesn’t change correlation.
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Examples of Covariance

Four equally likely pairs of values

21 O C] Qe o ] Qe
—1 1 —1 1 —1 1

cov(X,Y)=1/2 cov(X,Y)=—-1/2 cov(X,Y) =10

Note that E[X] =0 and E[Y] =0 in these examples. Then
cov(X,Y) = E[XY].

When cov(X,Y) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X, Y) <0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X,Y) =0, we say that X and Y are uncorrelated.
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