
Random Variables so far.

Probability Space: Ω, Pr : Ω→ [0,1], ∑ω∈Ω Pr(w) = 1.

Random Variables: X : Ω→ R.
Associated event: Pr [X = a] = ∑ω:X (ω)=a Pr(ω)

X and Y independent ⇐⇒ all associated events are independent.
Expectation: E [X ] = ∑a aPr [X = a] = ∑ω∈Ω X (ω)Pr(ω).

Linearity: E [X + Y ] = E [X ] + E [Y ].

Variance: Var(X ) = E [(X −E [X ])2] = E [X 2]− (E(X ))2

For independent X ,Y , Var(X + Y ) = Var(X ) + Var(Y ).
Also: Var(cX ) = c2Var(X ) and Var(X + b) = Var(X ).

Poisson: X ∼ P(λ ) E(X ) = λ , Var(X ) = λ .
Binomial: X ∼ B(n,p) E(X ) = np, Var(X ) = np(1−p)

Uniform: X ∼ U{1, . . . ,n} E [X ] = n+1
2 , Var(X ) = n2−1

12 .
Geometric: X ∼G(p) E(X ) = 1

p , Var(X ) = 1−p
p2
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Definition The covariance of X and Y is

cov(X ,Y ) := E [(X −E [X ])(Y −E [Y ])].

Definition The correlation of X ,Y , Cor(X ,Y ) is

corr(X ,Y ) :
cov(X ,Y )

σ(X )σ(Y )
.

Note: |corr(X ,Y )| ≤ 1.

corr(X ,X )? 1
corr(X ,−X )? -1
corr(X ,X/2)? 1
corr(X ,5X )? 1
corr(X ,X + Y ) with var(X ) = Var(Y ), and X ,Y independent? 1√

2

cov(X ,X + Y ) = E [(X −E [X ])(X −E [X ] + Y −E [Y ])] =
Var(X ) + cov(X ,Y ) = Var(X ).

corr(X ,X + Y ) = varX
σ(X )σ(X+Y ) = varX

σ(X )
√

2σ(X )
= 1√

2

r2 = corr(X ,Y )2 is fraction of variance of Y explained by X .
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Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y ) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y ) < 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.



Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y ) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y ) < 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.



Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y ) > 0, the RVs X and Y tend to be large or small
together.

X and Y are said to be positively correlated.

When cov(X ,Y ) < 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.



Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y ) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y ) < 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.



Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y ) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y ) < 0, when X is larger, Y tends to be smaller.

X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.



Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y ) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y ) < 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.



Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y ) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y ) < 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.



Examples of Covariance

E [X ] = 1×0.15 + 2×0.4 + 3×0.45 = 2.3
E [X 2] = 12×0.15 + 22×0.4 + 32×0.45 = 5.8
E [Y ] = 1×0.2 + 2×0.6 + 3×0.2 = 2
E [Y 2] = 1×0.2 + 4×0.6 + 9×0.2 = 4.4
E [XY ] = 1×0.05 + 1×2×0.1 + · · ·+ 3×3×0.2 = 4.85
cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = .25
var [X ] = E [X 2]−E [X ]2 = .51
var [Y ] = E [Y 2]−E [Y ]2 = .4
corr(X ,Y )≈ 0.55
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Inequalities: An Overview
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Andrey Markov

Andrey Markov is best known for his work on
stochastic processes. A primary subject of his
research later became known as Markov
chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

Markov was an atheist. In 1912 he protested
Leo Tolstoy’s excommunication from the
Russian Orthodox Church by requesting his
own excommunication. The Church complied
with his request.
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Markov’s inequality

The inequality is named for Andrey Markov, though in work by Pafnuty
Chebyshev. (Sometimes) called Chebyshev’s first inequality.

Theorem Markov’s Inequality
Assume f : ℜ→ [0,∞) is nondecreasing. Then,

Pr [X ≥ a]≤ E [f (X )]

f (a)
, for all a such that f (a) > 0.

Proof:

Observe that
1{X ≥ a} ≤ f (X )

f (a)
.

Indeed, if X < a, the inequality reads 0≤ f (x)/f (a), which holds since
f (·)≥ 0. Also, if X ≥ a, it reads 1≤ f (x)/f (a), which holds since f (·) is
nondecreasing.
Taking the expectation yields the inequality,

expectation of an indicator is the probability.
and expectation is monotone, e.g., weighted sum of points.

That is, ∑v Pr [X = v ]1{v ≥ a} ≤ ∑v Pr [X = v ] f (v)
f (a) .
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A picture



Markov Inequality Example: G(p)

Let X = G(p).

Recall that E [X ] = 1
p and E [X2] = 2−p

p2 .

Choosing f (x) = x , we
get

Pr [X ≥a]≤ E [X ]

a
=

1
ap

.

Choosing f (x) = x2,
we get

Pr [X ≥a]≤ E [X2]

a2 =
2−p
p2a2 .
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Chebyshev’s Inequality

This is Pafnuty’s inequality:

Theorem:

Pr [|X −E [X ]|> a]≤ var [X ]

a2 , for all a > 0.

Proof: Let Y = |X −E [X ]| and f (y) = y2. Then,

Pr [Y ≥ a]≤ E [f (Y )]

f (a)
=

var [X ]

a2 .

This result confirms that the variance measures the “deviations from
the mean.”
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Chebyshev and Poisson

Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ . Thus,

Pr [|X −λ | ≥ n]≤ var [X ]

n2 =
λ
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Chebyshev and Poisson (continued)
Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ .

By Markov’s inequality,

Pr [X ≥ a]≤ E [X 2]

a2 =
λ + λ 2

a2 .

Also, if a > λ , then X ≥ a⇒ X −λ ≥ a−λ > 0⇒ |X −λ | ≥ a−λ .

Hence, for a > λ , Pr [X ≥ a]≤ Pr [|X −λ | ≥ a−λ ]≤ λ

(a−λ )2 .



Chebyshev and Poisson (continued)
Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ . By Markov’s inequality,

Pr [X ≥ a]≤ E [X 2]

a2 =
λ + λ 2

a2 .

Also, if a > λ , then X ≥ a⇒ X −λ ≥ a−λ > 0⇒ |X −λ | ≥ a−λ .

Hence, for a > λ , Pr [X ≥ a]≤ Pr [|X −λ | ≥ a−λ ]≤ λ

(a−λ )2 .



Chebyshev and Poisson (continued)
Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ . By Markov’s inequality,

Pr [X ≥ a]≤ E [X 2]

a2 =
λ + λ 2

a2 .

Also, if a > λ , then X ≥ a⇒ X −λ ≥ a−λ > 0

⇒ |X −λ | ≥ a−λ .

Hence, for a > λ , Pr [X ≥ a]≤ Pr [|X −λ | ≥ a−λ ]≤ λ

(a−λ )2 .



Chebyshev and Poisson (continued)
Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ . By Markov’s inequality,

Pr [X ≥ a]≤ E [X 2]

a2 =
λ + λ 2

a2 .

Also, if a > λ , then X ≥ a⇒ X −λ ≥ a−λ > 0⇒ |X −λ | ≥ a−λ .

Hence, for a > λ , Pr [X ≥ a]≤ Pr [|X −λ | ≥ a−λ ]≤ λ

(a−λ )2 .



Chebyshev and Poisson (continued)
Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ . By Markov’s inequality,

Pr [X ≥ a]≤ E [X 2]

a2 =
λ + λ 2

a2 .

Also, if a > λ , then X ≥ a⇒ X −λ ≥ a−λ > 0⇒ |X −λ | ≥ a−λ .

Hence, for a > λ ,

Pr [X ≥ a]≤ Pr [|X −λ | ≥ a−λ ]≤ λ

(a−λ )2 .



Chebyshev and Poisson (continued)
Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ . By Markov’s inequality,

Pr [X ≥ a]≤ E [X 2]

a2 =
λ + λ 2

a2 .

Also, if a > λ , then X ≥ a⇒ X −λ ≥ a−λ > 0⇒ |X −λ | ≥ a−λ .

Hence, for a > λ , Pr [X ≥ a]≤ Pr [|X −λ | ≥ a−λ ]≤ λ

(a−λ )2 .



Chebyshev and Poisson (continued)
Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ . By Markov’s inequality,

Pr [X ≥ a]≤ E [X 2]

a2 =
λ + λ 2

a2 .

Also, if a > λ , then X ≥ a⇒ X −λ ≥ a−λ > 0⇒ |X −λ | ≥ a−λ .

Hence, for a > λ , Pr [X ≥ a]≤ Pr [|X −λ | ≥ a−λ ]≤ λ

(a−λ )2 .



Fraction of H ’s

Here is a classical application of Chebyshev’s inequality.

How likely is it that the fraction of H ’s differs from 50%?

Let Xm = 1 if the m-th flip of a fair coin is H and Xm = 0 otherwise.

Define
Yn =

X1 + · · ·+ Xn

n
, for n ≥ 1.

We want to estimate

Pr [|Yn−0.5| ≥ 0.1] = Pr [Yn ≤ 0.4 or Yn ≥ 0.6].

By Chebyshev,

Pr [|Yn−0.5| ≥ 0.1]≤ var [Yn]

(0.1)2 = 100var [Yn].

Now,

var [Yn] = 1
n2 (var [X1] + · · ·+ var [Xn]) = 1

n var [X1]≤ 1
4n .

Var(Xi ) = p(1− lp)≤ (.5)(.5) = 1
4
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Fraction of H ’s

Yn =
X1 + · · ·+ Xn

n
, for n ≥ 1.

Pr [|Yn−0.5| ≥ 0.1]≤ 25
n
.

For n = 1,000, we find that this probability is less than 2.5%.

As n→ ∞, this probability goes to zero.

In fact, for any ε > 0, as n→ ∞, the probability that the fraction of Hs
is within ε > 0 of 50% approaches 1:

Pr [|Yn−0.5| ≤ ε]→ 1.

This is an example of the Law of Large Numbers.

We look at a general case next.
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Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X1,X2, . . . be pairwise independent with the same distribution and
mean µ. Then, for all ε > 0,

Pr [|X1 + · · ·+ Xn

n
−µ| ≥ ε]→ 0, as n→ ∞.

Proof:
Let Yn = X1+···+Xn

n . Then

Pr [|Yn−µ| ≥ ε] ≤ var [Yn]

ε2 =
var [X1 + · · ·+ Xn]

n2ε2

=
nvar [X1]

n2ε2 =
var [X1]

nε2 → 0, as n→ ∞.
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Summary

Variance; Inequalities; WLLN

I Variance: var [X ] := E [(X −E [X ])2] = E [X 2]−E [X ]2

I Fact: var [aX + b]a2var [X ]

I Sum: X ,Y ,Z pairwise ind. ⇒ var [X + Y + Z ] = · · ·
I Markov: Pr [X ≥ a]≤ E [f (X )]/f (a) where ...

I Chebyshev: Pr [|X −E [X ]| ≥ a]≤ var [X ]/a2

I WLLN: Xm i.i.d. ⇒ X1+···+Xn
n ≈ E [X ]
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Confidence?

I You flip a coin once and get H.

Do think that Pr [H] = 1?

I You flip a coin 10 times and get 5 Hs.

Are you sure that Pr [H] = 0.5?

I You flip a coin 106 times and get 35% of Hs.

How much are you willing to bet that Pr [H] is exactly 0.35?

How much are you willing to bet that Pr [H] ∈ [0.3,0.4]?

Did different exam rooms perform differently? (6 afraid of 7?)

More generally, you estimate an unknown quantity θ .

Your estimate is θ̂ .

How much confidence do you have in your estimate?
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Confidence?

Confidence is essential is many applications:

I How effective is a medication?

I Are we sure of the milage of a car?

I Can we guarantee the lifespan of a device?

I We simulated a system. Do we trust the simulation results?

I Is an algorithm guaranteed to be fast?

I Do we know that a program has no bug?

As scientists and engineers, be convinced of this fact:

An estimate without confidence level is useless!
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Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a,b] is a 95%-confidence interval for an unknown quantity
θ if

Pr [θ ∈ [a,b]]≥ 95%.

The interval [a,b] is calculated on the basis of observations.

Here is a typical framework. Assume that X1,X2, . . . ,Xn are i.i.d. and
have a distribution that depends on some parameter θ .

For instance, Xn = B(θ).

Thus, more precisely, given θ , the random variables Xn are i.i.d. with
a known distribution (that depends on θ ).

I We observe X1, . . . ,Xn

I We calculate a = a(X1, . . . ,Xn) and b = b(X1, . . . ,Xn)

I If we can guarantee that Pr [θ ∈ [a,b]]≥ 95%, then [a,b] is a
95%-CI for θ .
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Confidence Interval: Applications

I We poll 1000 people.

I Among those, 48% declare they will vote for Trump.
I We do some calculations ....
I We conclude that [0.43,0.53] is a 95%-CI for the fraction of

all the voters who will vote for Trump.

I We observe 1,000 heart valve replacements that were
performed by Dr. Bill.

I Among those, 35 patients died during surgery. (Sad
example!)

I We do some calculations ...
I We conclude that [1%,5%] is a 95%-CI for the probability of

dying during that surgery by Dr. Bill.
I We do a similar calculation for Dr. Fred.
I We find that [8%,12%] is a 95%-CI for Dr. Fred’s surgery.
I What surgeon do you choose?
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Coin Flips: Intuition

Say that you flip a coin n = 100
times and observe 20 Hs.

If p := Pr [H] = 0.5, this event
is very unlikely.

Intuitively, if is unlikely that the
fraction of Hs, say An, differs a
lot from p := Pr [H].

Thus, it is unlikely that p differs
a lot from An. Hence, one
should be able to build a
confidence interval
[An− ε,An + ε] for p.

The key idea is that |An−p| ≤ ε ⇔ p ∈ [An− ε,An + ε].

Thus, Pr [|An−p|> ε]≤ 5%⇔ Pr [p ∈ [An− ε,An + ε]]≥ 95%.

It remains to find ε such that Pr [|An−p|> ε]≤ 5%.
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Confidence Interval with Chebyshev

I Flip a coin n times. Let An be the fraction of Hs.

I Can we find ε such that Pr [|An−p|> ε]≤ 5%?

Using Chebyshev, we will see that ε = 2.25 1√
n works. Thus

[An−
2.25√

n
,An +

2.25√
n

] is a 95%-CI for p.

Example: If n = 1500, then Pr [p ∈ [An−0.05,An + 0.05]]≥ 95%.

In fact, a = 1√
n works, so that with n = 1,500 one has

Pr [p ∈ [An−0.02,An +0.02]]≥ 95%.
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Confidence Intervals: Result

Theorem:
Let Xn be i.i.d. with mean µ and variance σ2.
Define An = X1+···+Xn

n . Then,

Pr [µ ∈ [An−4.5
σ√
n
,An + 4.5

σ√
n

]]≥ 95%.

Thus, [An−4.5 σ√
n ,An + 4.5 σ√

n ]] is a 95%-CI for µ.

Example: Let Xn = 1{ coin n yields H}. Then

µ = E [Xn] = p := Pr [H]. Also, σ
2 = var(Xn) = p(1−p)≤ 1

4
.

Hence, [An−4.51/2√
n ,An + 4.51/2√

n ]] is a 95%-CI for p.
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Confidence interval for p in B(p)

Let Xn be i.i.d. B(p). Define An = (X1 + · · ·+ Xn)/n.
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Proof:
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Pr [µ ∈ [An−4.5σ/
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√

n,An + 4.5×0.5/
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Confidence Interval for 1/p in G(p)

Let Xn be i.i.d. G(p). Define An = (X1 + · · ·+ Xn)/n.

Theorem:

[
An

1 + 4.5/
√

n
,

An

1−4.5/
√

n
] is a 95%-CI for

1
p
.
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Here, µ = 1
p and σ =
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]]≥ 95%.

Now, An−4.5 1
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n ≤
1
p ≤ 1

p ≤ An +4.5 1
p
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n is equivalent to

An

1+4.5/
√
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≤ 1
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1−4.5/
√

n
.

Examples: [0.7A100,1.8A100] and [0.96A10000,1.05A10000].
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Which Coin is Better?

You are given coin A and coin B. You want to find out which one has
a larger Pr [H]. Let pA and pB be the values of Pr [H] for the two coins.

Approach:
I Flip each coin n times.
I Let An be the fraction of Hs for coin A and Bn for coin B.
I Assume An > Bn. It is tempting to think that pA > pB.

Confidence?

Analysis: Note that

E [An−Bn] = pA−pB and var(An−Bn) =
1
n

(pA(1−pA)+pB(1−pB))≤ 1
2n

.

Thus, Pr [|An−Bn− (pA−pB)|> ε]≤ 1
2nε2 , so

Pr [pA−pB ∈ [An−Bn− ε,An−Bn + ε]]≥ 1− 1
2nε2 , and

Pr [pA−pB ≥ 0]≥ 1− 1
2n(An−Bn)2 .

Example: With n = 100 and An−Bn = 0.2, Pr [pA > pB ]≥ 1− 1
8 = 0.875.
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Unknown σ

For B(p), we wanted to estimate p. The CI requires σ =
√

p(1−p). We
replaced σ by an upper bound: 1/2.

In some applications, it may be OK to replace σ2 by the following sample
variance:

s2
n :=

1
n

n

∑
m=1

(Xm−An)
2.

However, in some cases, this is dangerous! The theory says it is OK if the
distribution of Xn is nice (Gaussian). This is used regularly in practice.
However, be aware of the risk.
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Summary

Confidence Intervals

1. Estimates without confidence level are useless!

2. [a,b] is a 95%-CI for θ if Pr [θ ∈ [a,b]]≥ 95%.

3. Using Chebyshev: [An−4.5σ/
√

n,An + 4.5σ/
√

n] is a 95%-CI for
µ.

4. Using CLT, we will replace 4.5 by 2.

5. When σ is not known, one can replace it by an upper bound.

6. Examples: B(p),G(p), which coin is better?

7. In some cases, one can replace σ by the empirical standard
deviation.
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