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Balls in Bins.

Birthday.
Coupon Collector.
Load balancing.

Geometric Distribution: Memoryless property.
Poission Distribution: Sum of two Poission is Poission.
pause

Tail Sum for Expectation.
Regression (optional.)

Balls in bins

One throws m balls into n > m bins.

Balls in bins

One throws m balls into n > m bins.
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Collision

Theorem: ,
Pr[no collision] ~ exp{— %%}, for large enough n.

Balls in bins

Theorem:
Pr[no collision] =~ exp{—%}, for large enough n.

1

09 \
08 "
07
06

[T I N _ E.g., with m = 6 one has

I
'
04 :\ Prlcollision] > 1/2

03 E \

02

01 Pr{no coflision] -7 "y’ 2n
N

0 5 10 15 20

Balls in bins

Theorem: ,
Pr[no collision] ~ exp{—%=}, for large enough n.

In particular, Pr[no collision] ~ 1,2 for m?/(2n) ~ In(2), i.e.,

ma\/2In(2)n~1.2v/n.

E.g., 1.2V20~5.4.
Roughly, Pr(collision] ~ 1/2 for m= /n. (6%~ 0.6.)

The Calculation.
A, = no collision when jth ball is placed in a bin.
PriAjlAi_10---NA = (1-51).
no collision = A;N---NAnm.

Product rule:
PF[A1 ﬂ-~~ﬂAm] = Pf[A1]Pf[A2‘A1]PI’[Am|A1 I"I-~~|"|Am,1]

= Pr[no collision] = (1 - %) (1 - m; ! > .

Hence,
m-1 k m—1 k
In(Prlno collision]) = Y In(1-=)~ Y (--)®
k=1 no=n

_Amm-1)®
n 2 ~2on

() We used In(1 —¢) ~ —e for |g| < 1.
D142+ +m—1=(m-1)m/2.




Approximation

exp{fx}:1fx+%xz+---z1fx, for x| < 1.

Hence, —x ~ In(1 — x) for |x| < 1.

Today’s your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With n= 365, one finds

Pr[collision] ~ 1/2 if m~ 1.21/365 ~ 23.
If m =60, we find that

602
2 x 365

2
Pr[no collision] ~ exp{—%} =exp{—s——==} ~ 0.007.

If m =366, then Pr[no collision] = 0. (No approximation here!)

Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:
X = Number of collisions between pairs of balls.

or number of pairs i and j where ball i and ball j are in same bin.
Xijj=1{balls /,j in same bin}
X=X Xj
E[X;] = Priballs i,j in same bin] = 1.
Ball i in some bin, ball j chooses that bin with probability 1/n.

— 2

ElX] = "G50 ~ 5.

Form=+/n, E[X]=1/2

Markov: Pr{X > ¢] < £X.

Prix>1]< B =12,

Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Pr(share a checksum] < 10732

Claim: b >2.9In(m)+9.
Proof:
Let n = 2P be the number of checksums.
We know Pr[no collision] ~ exp{—m?/(2n)} ~ 1 — m?/(2n). Hence,
Prlno collision] ~ 1 -107% & m?/(2n) ~ 1073
& 2n~ mP10° & 2671 = m2210
< b+1210+2logy(m) ~ 10+2.9In(m).

Note: logo(x) = loga(e)In(x) =~ 1.44In(x).

Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

m
n

(a) Pr[miss one specific item] ~ e~

(b) Pr[miss any one of the items] < ne= 7.

Coupon Collector Problem: Analysis.

Event Ap, = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1— 1)
Fail the second time: (1 1)
And so on ... for mtimes. Hence,
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PriAn] ~ exp{-"}.

For pm = ‘§ we need around nin2 ~ 0.69n boxes.




Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: E, = fail to get player k', fork=1,...,n

Probability of failing to get at least one of these n players:
p .= PI’[E1 UE2~~'UE,7]

How does one estimate p? Union Bound:

p=PrlEyUEy---UEp) < PrlEq] + Pr[Ep)- - Pr[Ep].

PrlEx~e T, k=1,....n.
Plug in and get

33

p<ne"

Collect all cards?

Thus,
%

Pr[missing at least one card] < ne”n.

Hence,
Pr[missing at least one card] < p when m > nin
Togetp=1/2,set m=nin(2n).

(p < ne7 < ne~""/P) < n(B) < p))
E.g., n=102= m=530;n=10% = m=7600.
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Time to collect coupons

X-time to get n coupons.

X1 - time to get first coupon. Note: X; =1. E(X;) =1.
Xo - time to get second coupon after getting first.
Pr[“get second coupon”|“got milk first coupon”] = %

E[Xe]? Geometric | | | = E[Xe] = § = 77 = 7.
n
Pr{“getting ith coupon|“got i — 1rst coupons’] = 2=U=1) — n-is1

E[X,']:%:ni—’,%.iztz...,n‘

n n
E[X] = E[X1]+”'+E[X”]:E+f+f+'“+7
1
2

n(1+ +...+1B):: nH(n) =~ n(Inn+y)

Review: Harmonic sum

H(m) =1+ + +1~/n1dxfln(n)
T2 n~ i x ’

Y

0 I
A good approximation is

H(n) = In(n) +y where y~ 0.58 (Euler-Mascheroni constant).

Simplest..

Load balance: m balls in n bins.
For simplicity: n balls in n bins.
Round robin: load 1!
Centralized! Not so good.
Uniformly at random? Average load 1.
Max load?
n. Uh Oh!
Max load with probability > 1 — 67
8 = fortoday. cis 1 or 2.

Balls in bins.

For each of n balls, choose random bin: X; balls in bin i.
Pr[X; > K] < ¥.sc[n),s=k Prlballs in S chooses bin /]
From Union Bound: Pr[U;A;] < ¥; Pr[Aj]

Pr{balls in S chooses bin i] = (%)K and (}) subsets S.
m (1 k
k) \n

< MY

= ki\n) K

Choose k, so that Pr{X; > k] < .

Pr[any)(,-zk]gnxﬁ:%amaxloadgkw.p. >1-1

Pr[X; > k]

IN




Solving for k

PriXi> K] < & <1/m?
What is upper bound on max-load k?

Lemma: Max load is ©(log n) with probability > 1 — 1.
k! > n? for k = 2elogn

(Recall k! > (£)k)

k

— H<(®"< (o
If logn > 1, then k = 2elog n suffices.
Also: k = ©(logn/ loglog n) suffices as well.
kk — ne.
Actually Max load is ©(log n/ loglog n) w.h.p.
(W.h.p. - means with probability at least 1 — O(1/n°) for today.)

Better than variance based methods...

Geometric Distribution: Memoryless

Let X be G(p). Then, for n> 0,

Pr[X > n] = Pr[first nflips are T] = (1-p)".
Theorem

Pr{X > n+m|X > n] = Pr[X > m],m,n>0.

Proof:

Pr[X >n+mand X > n]
Pr[X > n]
Pr{X > n+m]
Pr{X > n|
a-pmn m
= Ta—pp 0P
= Pr[X>m].

PriX>n+mX>n =

Geometric Distribution: Memoryless - Interpretation

Pr{X > n+m|X > n] = Pr[X > m],m,n>0.
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Pr(X > n+m|X > n] = Pr[A|B] = Pr[A] = Pr[X > m].
The coin is memoryless, therefore, so is X.

Expected Value of Integer RV

Theorem: For ar.v. X that takes values in {0,1,2,...}, one has

E[X]=Y PriX >1].
Proof: One has =t

EX] = YixPriX=i]
i=1

Y iPrX > i) - PriX > i+1]}

i=1

= Y lixPrX >0 ix PriX > i1])
i=1

- i{ixPr[le]—(i—UxPr[Xzi]}
i=1

8

= Y Prx>1i.

O

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values {0,1,2,...}, one has

EX]=Y PrHX > 1)
i=1

If X = G(p), then Pr[X > i] = Pr[X > i—1] = (1—p)-1.

Hence,
= - f 1 1
EX]= 2_1(1 —p) = /—2_0(1 -p) = To0-p) =-.

Sum of Poisson Random Variables.

For X =P(A)and Y = P(u), whatis X+ Y?

Poission? Yes.
What parameter? A + .

Why?
P(A) is limit n — oo of B(n,A/n).

Recall Derivation:
break interval into n intervals
and each has arrival with probability 1 /n.

Now:
arrival for X happens with probability A /n
arrival for Y happens with probability p/n

So, we get limit n — e is B(n, (A +pu)/n).

Details: both could arrive with probability Au/n?.
But this goes to zero as n — .
(Like A2/n? in previous derivation)




Linear Regression: Preamble

The “best” guess about Y, if we know only the distribution of Y, is
E[Y].
If “best” is Mean Squared Error.
More precisely, the value of a that minimizes E[(Y — a)?] is a= E[Y].
Proof:
Let V:= Y —E[Y].
Then, E[Y]= E[Y — E[Y]] = E[Y] - E[Y]=0.
So, E[Yc] =0,Vc. Now,
E(Y-a?] = E[(Y-E[Y]+E[Y]-a)?
= E[(Y+c)? withc=E[Y]-a
= E[V2+2Vc+c? = E[V?]+2E[Vc]+c?
= E[V3+0+c%>E[V?).

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose E[Y].

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?
The idea is to use a function g(X) of the observation to estimate Y.
The simplest function g(X) is a constant that does not depend of X.
The next simplest function is linear: g(X) = a+ bX.

What is the best linear function? That is our next topic.

A bit later, we will consider a general function g(X).

Linear Regression: Motivation

Example 1: 100 people.
Let (Xn, Yn) = (height, weight) of person n, for n=1,...,100:

Fitted Line
Weight kg = - 114.3 +{106.5 Height M

Weight kg

The blue lineis Y = —-114.3+106.5X. (X in meters, Y in kg.)

Hence, E[(Y —a)?] > E[(Y — E[Y])?],Va. d Best linear fit: Linear Regression.
Motivation LLSE A Bit of Algebra
Example 2: 15 people. 'li'ﬁSE[Y‘X] - best guess for Y given X. Y—¥=(Y—E[Y)- C%(,)[()'(P(Xf E[X]).
! eorem R .
We look at two attributes: (Xn, Y») of person n, for n=1,...,15: Consider two RVs X, Y with a given distribution Pr{X = x, Y = y]. Hence, E[Y — Y] =0. We want to show that E[(Y — Y)X] =0.
- Then
¥ ’ A cov(X,Y) Note that
Y _v_ COVAA T ) iy N ~
Proof 1: Hvix= Y;f[Y] v X "f[xl)‘ E[(Y = Y)X]=E[(Y - V)(X -~ E[X])].
1 YfY:(Y—E[Y])fCovva(,[)’q)(xfE[X]). E[Y — Y] =0 by linearity. because E[(Y — Y)E[X]] = 0.

)

a—+ h.\';

~

The line Y = a+ bX is the linear regression.

Also, £[(Y — V)X] = 0. after a bit of algebra. (next slide)
Combine brown inequalities: £[(Y — ¥)(c-+ dX)] =0 for any ¢, d.
Since: ¥ = a+BX for some o, B, so 3c,d st. ¥ —a—bX =c+dX.
Then, E[(Y - Y)(Y —a—bX)]=0,va,b. Now,
E[(Y-a—bX)?|=E[(Y-Y+V—a-bX)]

=E[(Y - V)?|+E[(Y-a-bX)?]+0>E[(Y- V)2
This shows that E[(Y — Y)2] < E[(Y — a— bX)?], for all (a,b).
Thus Y is the LLSE. O

Now,

E[(Y - ¥)(X - E[X])]

— El(Y - EIV)(X - EX)] - ST - Epx - Epay
=0 cov(X,Y) - %)[()’(]Y)var[X] =0. O

() Recall that cov(X,Y) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])?].




Discrete Probability.

Probability Space: Q, Pr:Q — [0,1], Y yeq Pr(w) =1.
Events: AcC Q.

Simple Total Probability: Pr[B] = Pr[AnB]+ Pr[An B].
Conditional Probability: Pr{A|B] = 457

Simple Product Rule: Pr{An B] = Pr[A|B]Pr[B].
Bayes Rule: Pr[A|B] = 215418

Inference:
Have one of two coins. Flip coin, which coin do you have?
Got positive test result. What is probability you have disease?

Random Variables

Random Variables: X : Q — R.

Distribution: Pr[X = a] = ¥.4.x(w)=a Pr(®)

X and Y independent <= all associated events are independent.

Expectation: E[X] =Y aPr[X = a] = ¥ yecq X(®)Pr().
Linearity: E[X+ Y] = E[X]+E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?
For independent X, Y, Var(X + Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X + b) = Var(X).

Poisson: X ~ P(A)  PriX=1i=e*4.
E(X) = A, Var(X) = 1. ‘ _
Binomial: X ~ B(n,p)  Pr[X=1i]= (7)p'(1—p)"~’
E(X) = np, Var(X) = np(1 - p)
Uniform: X ~ U{1,...,n} ~ Vie[t,n],PriX=0=1.
E[X] = 241, Var(X) = B3t v
Geometric: X ~ G(p) PriX=il=(1-p)~'p
E(X) =1, Var(X) = 1‘);;’

Note: Probability Mass Function = Distribution.




