Outline

Balls in Bins.

Birthday.

Coupon Collector.

Load balancing.

Geometric Distribution: Memoryless property.

Poission Distribution: Sum of two Poission is Poission.

pause

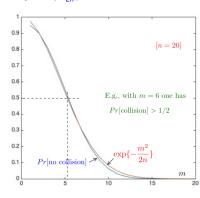
Tail Sum for Expectation.

Regression (optional.)

Balls in bins

Theorem:

Pr[no collision] ≈ exp{ $-\frac{m^2}{2n}$ }, for large enough *n*.



Balls in bins

One throws m balls into n > m bins.

Balls in bins

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}\$, for large enough n.

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

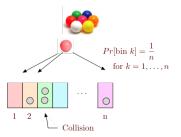
$$m \approx \sqrt{2 \ln(2) n} \approx 1.2 \sqrt{n}$$
.

E.g., $1.2\sqrt{20} \approx 5.4$.

Roughly, $Pr[\text{collision}] \approx 1/2 \text{ for } m = \sqrt{n}. \ (e^{-0.5} \approx 0.6.)$

Balls in bins

One throws m balls into n > m bins.



Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}\$, for large enough n.

The Calculation.

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_i|A_{i-1}\cap\cdots\cap A_1]=(1-\frac{i-1}{n}).$$

no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

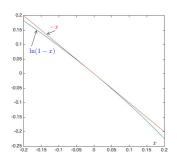
$$\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{\binom{n}{n}}$$

$$= -\frac{1}{n} \frac{m(m-1)^{\binom{n}{1}}}{2} \approx -\frac{m^2}{2n}$$

(*) We used $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| \ll 1$.

(†)
$$1+2+\cdots+m-1=(m-1)m/2$$
.

Approximation



$$\exp\{-x\}=1-x+\frac{1}{2!}x^2+\cdots\approx 1-x, \text{ for } |x|\ll 1.$$

Hence, $-x \approx \ln(1-x)$ for $|x| \ll 1$.

Checksums!

Consider a set of m files.

Each file has a checksum of b bits.

How large should b be for $Pr[\text{share a checksum}] < 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums.

We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$Pr[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3}$$

 $\Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10}$
 $\Leftrightarrow b+1 \approx 10 + 2\log_2(m) \approx 10 + 2.9\ln(m)$.

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.

Today's your birthday, it's my birthday too...

Probability that *m* people all have different birthdays?

With n = 365, one finds

 $Pr[collision] \approx 1/2 \text{ if } m \approx 1.2\sqrt{365} \approx 23.$

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then $Pr[no\ collision] = 0$. (No approximation here!)

Coupon Collector Problem.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

- (a) $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}$
- (b) $Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}$.

Using linearity of expectation.

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs i and j where ball i and ball j are in same bin.

$$X_{ij} = 1\{\text{balls } i, j \text{ in same bin}\}$$

$$X = \sum_{ij} X_{ij}$$

 $E[X_{ii}] = Pr[\text{balls } i, j \text{ in same bin}] = \frac{1}{n}$.

Ball i in some bin, ball j chooses that bin with probability 1/n.

$$E[X] = \frac{m(m-1)}{2n} \approx \frac{m^2}{2n}$$

For
$$m = \sqrt{n}$$
, $E[X] = 1/2$

Markov:
$$Pr[X \ge c] \le \frac{EX}{c}$$
.

$$Pr[X \ge 1] \le \frac{E[X]}{1} = 1/2.$$

Coupon Collector Problem: Analysis.

Event A_m = 'fail to get Brian Wilson in m cereal boxes'

Fail the first time: $(1-\frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$ And so on ... for *m* times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m$$

$$In(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$

$$Pr[A_m] \approx \exp\{-\frac{m}{n}\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69 n$ boxes.

Collect all cards?

Experiment: Choose *m* cards at random with replacement.

Events: E_k = 'fail to get player k', for k = 1, ..., n

Probability of failing to get at least one of these n players:

$$p := Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate *p*? Union Bound:

$$p = Pr[E_1 \cup E_2 \cdots \cup E_n] \leq Pr[E_1] + Pr[E_2] \cdots Pr[E_n].$$

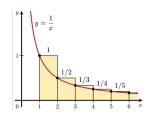
$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \dots, n.$$

Plug in and get

$$p < ne^{-\frac{m}{n}}$$
.

Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$



A good approximation is

 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Collect all cards?

Thus,

 $Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}$.

Hence,

 $Pr[\text{missing at least one card}] \le p \text{ when } m \ge n \ln(\frac{n}{p}).$

To get
$$p = 1/2$$
, set $m = n \ln(2n)$.

$$(p \le ne^{-\frac{m}{n}} \le ne^{-\ln(n/p)} \le n(\frac{p}{n}) \le p.)$$

E.g.,
$$n = 10^2 \Rightarrow m = 530$$
; $n = 10^3 \Rightarrow m = 7600$.

Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1! Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability $\geq 1 - \delta$?

 $\delta = \frac{1}{n^c}$ for today. c is 1 or 2.

Time to collect coupons

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr[\text{"get second coupon"}|\text{"got milk first coupon"}] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{2}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Balls in bins.

For each of n balls, choose random bin: X_i balls in bin i.

 $Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$

From Union Bound: $Pr[\cup_i A_i] \leq \sum_i Pr[A_i]$

 $Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \text{ and } \binom{n}{k} \text{ subsets } S.$

$$\Pr[X_i \ge k] \le \binom{n}{k} \left(\frac{1}{n}\right)^k$$
$$\le \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$$

Choose k, so that $Pr[X_i \ge k] \le \frac{1}{n^2}$.

 $Pr[\text{any } X_i \ge k] \le n \times \frac{1}{n^2} = \frac{1}{n} \to \text{max load} \le k \text{ w.p. } \ge 1 - \frac{1}{n}$

Solving for k

$$Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$$
?

What is upper bound on max-load k?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

 $k! \ge n^2$ for $k = 2e \log n$ (Recall $k! \ge (\frac{k}{n})^k$.)

 $\implies \frac{1}{k!} \le \left(\frac{e}{k}\right)^k \le \left(\frac{1}{2\log n}\right)^k$

If $\log n \ge 1$, then $k = 2e \log n$ suffices.

Also: $k = \Theta(\log n / \log \log n)$ suffices as well.

 $k^k \rightarrow n^c$.

Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p.

(W.h.p. - means with probability at least $1 - O(1/n^c)$ for today.)

Better than variance based methods...

Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - i \times Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - (i - 1) \times Pr[X \ge i] \}$$

$$= \sum_{i=1}^{\infty} Pr[X \ge i].$$

Geometric Distribution: Memoryless

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^n} = (1 - p)^m$$

$$= Pr[X > m].$$

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

Geometric Distribution: Memoryless - Interpretation

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = Pr[A|B] = Pr[A] = Pr[X > m].$$

The coin is memoryless, therefore, so is X.

Sum of Poisson Random Variables.

For $X = P(\lambda)$ and $Y = P(\mu)$, what is X + Y?

Poission? Yes.

What parameter? $\lambda + \mu$.

Why?

 $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation:

break interval into *n* intervals

and each has arrival with probability λ/n .

Now:

arrival for X happens with probability λ/n

arrival for Y happens with probability μ/n

So, we get limit $n \to \infty$ is $B(n, (\lambda + \mu)/n)$.

Details: both could arrive with probability $\lambda \mu / n^2$.

But this goes to zero as $n \to \infty$.

(Like λ^2/n^2 in previous derivation)

Linear Regression: Preamble

The "best" guess about Y, if we know only the distribution of Y, is E[Y].

If "best" is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y-a)^2]$ is a=E[Y].

Proof:

Let
$$\hat{Y}:=Y-E[Y]$$
.
 Then, $E[\hat{Y}]=E[Y-E[Y]]=E[Y]-E[Y]=0$.
 So, $E[\hat{Y}c]=0, \forall c$. Now,

$$E[(Y-a)^{2}] = E[(Y-E[Y]+E[Y]-a)^{2}]$$

$$= E[(\hat{Y}+c)^{2}] \text{ with } c = E[Y]-a$$

$$= E[\hat{Y}^{2}+2\hat{Y}c+c^{2}] = E[\hat{Y}^{2}]+2E[\hat{Y}c]+c^{2}$$

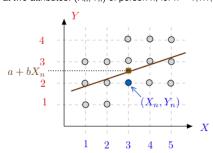
$$= E[\hat{Y}^{2}]+0+c^{2} \ge E[\hat{Y}^{2}].$$

Hence, $E[(Y - a)^2] \ge E[(Y - E[Y])^2], \forall a$.

Motivation

Example 2: 15 people.

We look at two attributes: (X_n, Y_n) of person n, for n = 1, ..., 15:



The line Y = a + bX is the linear regression.

Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose E[Y].

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?

The idea is to use a function g(X) of the observation to estimate Y.

The simplest function g(X) is a constant that does not depend of X.

The next simplest function is linear: g(X) = a + bX.

What is the best linear function? That is our next topic.

A bit later, we will consider a general function g(X).

LLSE

LLSE[Y|X] - best guess for Y given X.

Theorem

Consider two RVs X, Y with a given distribution Pr[X = x, Y = y]. Then.

Proof 1:
$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var(X)}(X - E[X]). \quad E[Y - \hat{Y}] = 0 \text{ by linearity.}$$

Also, $E[(Y - \hat{Y})X] = 0$, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d. Since: $\hat{Y} = \alpha + \beta X$ for some α, β , so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$. Then, $E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b$. Now,

$$E[(Y - a - bX)^{2}] = E[(Y - \hat{Y} + \hat{Y} - a - bX)^{2}]$$

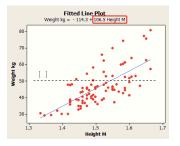
= $E[(Y - \hat{Y})^{2}] + E[(\hat{Y} - a - bX)^{2}] + 0 \ge E[(Y - \hat{Y})^{2}].$

This shows that $E[(Y-\hat{Y})^2] \leq E[(Y-a-bX)^2]$, for all (a,b). Thus \hat{Y} is the LLSE.

Linear Regression: Motivation

Example 1: 100 people.

Let (X_n, Y_n) = (height, weight) of person n, for n = 1, ..., 100:



The blue line is Y = -114.3 + 106.5 X. (X in meters, Y in kg.)

Best linear fit: Linear Regression.

A Bit of Algebra

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Hence, $E[Y - \hat{Y}] = 0$. We want to show that $E[(Y - \hat{Y})X] = 0$.

Note that

$$E[(Y - \hat{Y})X] = E[(Y - \hat{Y})(X - E[X])],$$

because $E[(Y - \hat{Y})E[X]] = 0$.

Now,

$$\begin{split} E[(Y - \hat{Y})(X - E[X])] &= E[(Y - E[Y])(X - E[X])] - \frac{cov(X, Y)}{var[X]} E[(X - E[X])(X - E[X])] \\ &= {}^{(*)} cov(X, Y) - \frac{cov(X, Y)}{var[X]} \frac{var[X]}{var[X]} = 0. \quad \Box \end{split}$$

(*) Recall that cov(X, Y) = E[(X - E[X])(Y - E[Y])] and $var[X] = E[(X - E[X])^2]$.

Discrete Probability.

Probability Space: Ω , $Pr: \Omega \rightarrow [0,1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$.

Events: $A \subset \Omega$.

Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A\cap B]}{Pr[B]}$

Simple Product Rule: $Pr[A \cap B] = Pr[A|B]Pr[B]$.

Bayes Rule: $Pr[A|B] = \frac{Pr[B|A]Pr[B]}{Pr[B]}$

Inference:

Have one of two coins. Flip coin, which coin do you have? Got positive test result. What is probability you have disease?

Random Variables

Random Variables: $X : \Omega \rightarrow R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$.

Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent X, Y, Var(X+Y) = Var(X) + Var(Y).

Also: $Var(cX) = c^2 Var(X)$ and Var(X+b) = Var(X).

 $\begin{array}{ll} \text{Poisson: } X \sim P(\lambda) & Pr[X=i] = e^{-\lambda} \frac{\lambda^i}{i!}. \\ E(X) = \lambda, \ Var(X) = \lambda. \\ \text{Binomial: } X \sim B(n,p) & Pr[X=i] = \binom{n}{i!} p^i (1-p)^{n-i} \end{array}$

Entitled. $X \sim B(n,p)$ $Pr[X = i] = \binom{n}{i} p^n (1-p)^n$ E(X) = np, Var(X) = np(1-p)Uniform: $X \sim U\{1, \dots, n\}$ $\forall i \in [1, n], Pr[X = i] = \frac{1}{n}$. $E[X] = \frac{n+1}{2}, Var(X) = \frac{n^2-1}{12}$. Geometric: $X \sim G(p)$ $Pr[X = i] = (1-p)^{i-1}p$ $E(X) = \frac{1}{p}, Var(X) = \frac{1-p}{p^2}$

Note: Probability Mass Function = Distribution.