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Balls in Bins.

Birthday.
Coupon Collector.
Load balancing.

Geometric Distribution: Memoryless property.
Poission Distribution: Sum of two Poission is Poission.
pause

Tail Sum for Expectation.
Regression (optional.)



Balls in bins

One throws m balls into n > m bins.




Balls in bins

One throws m balls into n > m bins.

e

(' Prlbin k] = !
n

1 2 '\_ n
Collision

Theorem:
Pr[no collision] ~ exp{—g}, for large enough n.
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Balls in bins

Theorem: ,
Pr[no collision] ~ exp{ %=}, for large enough n.

In particular, Pr[no collision] ~ 1/2 for m?/(2n) ~In(2), i.e.,

m=+/2In(2)n=1.2/n.

E.g., 1.2v20~5.4.
Roughly, Pr[collision] ~ 1/2 for m=+/n. (¢ 9%~ 0.6.)



The Calculation.
A, = no collision when jth ball is placed in a bin.
PriAilAi_1N---n A =(1-51).
no collision = Ay N---NAm.

Product rule:
PrlAiN---NAn] = Pr[A1]Pr[Az|A1] - PrlAm|A1 NN Am_1]

= Pr[no collision] = (1 - :7) (1 B m; : ) '

In(Pr[no collision]) = Y In(1— lr(]) ~ Y (-=)®

Hence,

_tmm-1)®  m?
n 2 T 2n
() We used In(1 —¢) ~ —e for || < 1.
D142+ 4m-1=(m-1)m/2.



Approximation

-025 ' ' T n ' ' '
-0.2 -0.15 -0.1 -0.05 [} 0.05 0.1 0.15 0.2

exp{—X}:1—X+%X2+--~%1—X7 for |x] <« 1.

Hence, —x ~ In(1 — x) for |x| <« 1.



Today’s your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr[collision] ~ 1/2 if m~1.21/365 ~ 23.
If m= 60, we find that
02
2 x 365

2
Pr[nocollision]zexp{—%}— xp{— } ~0.007.

If m= 366, then Pr[no collision] = 0. (No approximation here!)



Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:
X = Number of collisions between pairs of balls.

or number of pairs i and j where ball / and ball j are in same bin.
Xjj = 1{balls i,j in same bin}
X=¥jXj
E[Xj] = Prloalls i,j in same bin] = -
Ball i in some bin, ball j chooses that bin with probability 1/n.

ElX|= "G50~ .
Form:\f, EX]=1/2
Markov: PriX > c] < EX.

Prix>1] <X —1/2




Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Prshare a checksum] < 10-3?

Claim: b >2.9In(m)+9.
Proof:
Let n = 2P be the number of checksums.
We know Pr[no collision] ~ exp{—m?/(2n)} ~ 1 —m?/(2n). Hence,
Pr[no collision] ~ 1 —107% < m?/(2n) ~ 1073
& 2n~ mP10% & 26+ ~ m?210

< b+1~=10+2logy(m) =~ 10+2.9In(m).

Note: logs(x) = logo(e) In(x) =~ 1.44In(x).



Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,
(a) Pr[miss one specific item] ~ e~ 7

(b) Pr[miss any one of the items] < ne~ 7.

BRIAN

WILSON




Coupon Collector Problem: Analysis.

Event A, = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1 — ,17)

Fail the second time: (1—1)
And so on ... for m times. Hence,

PriAm]

In(Pr[Am])

Pr{Am]

~
~

1 1
(1_E)><...

For pm = % we need around nin2 ~ 0.69n boxes.



Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: E, = fail to get playerk’ , fork=1,...,n
Probability of failing to get at least one of these n players:

pZ:PI’[E1UE2~--UEn]

How does one estimate p? Union Bound:
p=Prl[EfUE;---UE;] < Pr[E1] + Pr|Ez] - - - Pr|Ep].

PriEd]~e 7.k=1,....n.
Plug in and get

33

p<ne



Collect all cards?

Thus,

m
n .

Pr[missing at least one card] < ne™

Hence,
Pr[missing at least one card] < p when m > nIn(g).
Toget p=1/2,set m=nin(2n).

(p<ne"7 <ne (P < n(B)<p)
E.g., =102 = m=530;n=10% = m=7600.



Time to collect coupons

X-time to get n coupons.
Xj - time to get first coupon. Note: X; =1. E(X;) =1.
Xo - time to get second coupon after getting first.

|

Pr[“get second coupon”|“got milk first coupon”] = =+

E[Xz]? Geometric | | | = E[Xp] = & = 47 = ;1.
Pr[“getting ith coupon|“got i — 1rst coupons’] = U1 — n=is1
EXl =5 = mtmi=12...n
n n n
EIX] = EDXi]+-+EXa ="+ttt
X] = EDGl+ DG =D T ]

1 1
— n(1+§+...+B):;nH(n)xn(Inn—H’)



Review: Harmonic sum

H(n)—1+1—|— +l~/n1dx—ln(n)
N 2 n~Jox '

1/2

—2 1/4 /5

0 1 2 3 4 ;1 li) &
A good approximation is

H(n) ~ In(n) 4y where v~ 0.58 (Euler-Mascheroni constant).



Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.
Max load?
n. Uh Oh!

Max load with probability > 1 — 67
§ =  for today. cis 1 or 2.



Balls in bins.

For each of n balls, choose random bin: X; balls in bin i.
Pr[X; > K] < Y.sc[n,|s|=« Prlballs in S chooses bin /]
From Union Bound: Pr[U;Aj] <Y; Pr[Aj]

Prballs in S chooses bin i] = (%)k and (}) subsets S.

en = (0)(3)
< %) -7

Choose k, so that Pr(X; > k] < .
1

Priany X; > k] <nx & =1 — maxload <kwp. >1-1



Solving for k

PriX; > k] < & <1/n??
What is upper bound on max-load k?

Lemma: Max load is ©(log n) with probability > 1 — ,17
k! > r? for k =2elogn
(Recall k! > (X))

— <0 < (k)"
If logn > 1, then k = 2elog n suffices.
Also: k = ©(logn/loglog n) suffices as well.
kk — ne.
Actually Max load is ©(log n/loglog n) w.h.p.
(W.h.p. - means with probability at least 1 — O(1/n°) for today.)
Better than variance based methods...



Geometric Distribution: Memoryless

Let X be G(p). Then, for n> 0,

Pr[X > n] = Pr[ first nflips are T] = (1—p)".
Theorem

Pr(X>n+m|X > n|= Pr[X >m|,mn>0.

Proof:

Pr(X >n+mand X > n|

PriX>n+mX>n = PrIX > 7

Pr[X >n+m]
Pr(X > n

_ (=P im
- G P
= Pr[X>m].



Geometric Distribution: Memoryless - Interpretation

PriX>n+m|X > n|=Pr[X>m],mn>0.

B A
TTT...TTTITTT..... T H

e e e
n m

Pr[X > n+m|X > n]| = Pr[A|B] = Pr[A] = Pr[X > m].

The coin is memoryless, therefore, so is X.



Expected Value of Integer RV

Theorem: For ar.v. X that takes values in {0,1,2,...}, one has

E[X] = Z PriX >1].
Proof: One has =1

E[X] i Pr[X =]

1

I

Y i{PrX > i)~ PriX > i +1])
i=1

oo

= Y {ix PrIX > - ix PrX > i+ 1]}
i=1

= Y {ix PrX > ]~ (- 1) x PrX > ]}

i=1

Y PriX > ]

i=1



Geometric Distribution: Yet another look

Theorem: For ar.v. X that takes the values {0,1,2,...}, one has

EX]= Y PriX >
i=1
If X = G(p), then Pr[X >il=Pr[X>i—1]=(1-p)~".
Hence,

— — 1

EX) = (1P = 200 = g - H



Sum of Poisson Random Variables.

For X=P(A) and Y = P(u), whatis X+ Y?

Poission? Yes.
What parameter? A + .

Why?
P(A) is limit n — « of B(n,A/n).

Recall Derivation:
break interval into n intervals
and each has arrival with probability 1 /n.

Now:
arrival for X happens with probability A /n
arrival for Y happens with probability it /n

So, we get limit n — o is B(n, (A + w)/n).

Details: both could arrive with probability A /n?.
But this goes to zero as n — .
(Like A2/r? in previous derivation)



Linear Regression: Preamble

The “best” guess about Y, if we know only the distribution of Y, is
ETY].
If “best” is Mean Squared Error.
More precisely, the value of a that minimizes E[(Y — a)?] is a= E[Y].
Proof:
Let V:= Y —E[Y].
Then, E[Y] = E[Y — E[Y]] = E[Y] - E[Y] =0.
So, E[Yc] = 0,vc. Now,
E(Y-a)’] = El(Y-E[Y]+E[Y]-a)
= E[(Y+c)?)|withc=E[Y]-a
= E[Y?+2YVc+c? = E[V?|+2E[Yc]+c?
= E[V?]+0+c% > E[V?).

Hence, E[(Y —a)?] > E[(Y — E[Y])?],Va. O



Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose E[Y].

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?
The idea is to use a function g(X) of the observation to estimate Y.
The simplest function g(X) is a constant that does not depend of X.
The next simplest function is linear: g(X) = a+ bX.

What is the best linear function? That is our next topic.

A bit later, we will consider a general function g(X).



Linear Regression: Motivation

Example 1: 100 people.
Let (Xn, Yn) = (height, weight) of person n, forn=1,...,100:

Fitted Line Plo
Weight kg = - 1143

Weight kg
I o o ~ @
3 3 3 S =
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*

w
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L
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The blue lineis Y =—-114.3+106.5X. (X in meters, Y in kg.)

Best linear fit: Linear Regression.



Motivation

Example 2: 15 people.

We look at two attributes: (X, Y,) of person n, for n=1,...,15:

v
A

4 Q--0--0

3
i+ bX,

2

1 O O (X'.r.".}/n}

Ll ¢

L 2 3 4 5

The line Y = a+ bX is the linear regression.



LLSE

LLSE[Y|X] - best guess for Y given X.
Theorem
Consider two RVs X, Y with a given distribution Pr[X =x,Y =y].

Then
’ cov(X,Y)
Proof 1: LIY|X] = Y= E[Y]+ﬁ(X E[X]).

Y-V =(Y-E[Y])- S (X —EIX]).  E[Y V]~ 0by linearity.

Also, E[(Y — Y)X] — 0. after a bit of algebra. (next slide)

Combine brown inequalities: £[(Y — V)(c dX)] =0 forany c,d.
Since: Y = o+ BX for some «, 3, so 3¢, d s.t. Y —a—bX=c+adX.
Then, E[(Y — Y)(V —a—bX)] =0,va,b. Now,
E[(Y—a—bX)?|=E[(Y-V+V—a-bX)?
= E[(Y-Y)’]+E[(Y—a—bX)?|+0>E[(Y-Y)?.

This shows that E[(Y — ¥)2] < E[(Y —a— bX)?], for all (a,b).
Thus Y is the LLSE. O



A Bit of Algebra

Y-V = (Y- E[Y]) - 2L (X ~ E[X]).

Hence, E[Y — ¥] = 0. We want to show that E[(Y — ¥)X] = 0.
Note that

E[(Y - V)X]=E[(Y - V)(X - E[X])],
because E[(Y — Y)E[X]] = 0.
Now,

E[(Y = V)(X — EIX])]

cov(X,Y)
= E[(Y—E[YD(X - E[X])] - T[X]E[(X_ EX)(X - E[X])]
cov(X,Y)

“variX] var[X]=0. O

=0 cov(X,Y) -

() Recall that cov(X. Y) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])?].



Discrete Probability.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =1.
Events: Ac Q.

Simple Total Probability: Pr[B] = Pr[AnB]+ Pr[An B].

Conditional Probability: Pr(A|B] = ZH452.

Simple Product Rule: Pr[An B] = Pr[A|B]Pr[B].

Bayes Rule: Pr[A|B] = 254718

Inference:
Have one of two coins. Flip coin, which coin do you have?
Got positive test result. What is probability you have disease?



Random Variables
Random Variables: X: Q — R.

Distribution: Pr[X = a] = ¥.¢. x(w)=a Pr(®)

X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = ¥ yecq X(®)Pr(o).

Linearity: E[X + Y] = E[X]+ E[Y].
Variance: Var(X) = E[(X — E[X])?] = E[X?] - (E(X))?

For independent X, Y, Var(X+ Y) = Var(X) + Var(Y).

Also: Var(cX) = ¢ Var(X) and Var(X + b) = Var(X).

Poisson: X ~ P(A)  PriX=i]=e 4.
E(X)=A, Var(X)=A.

Binomial: X ~ B(n,p)  PriX=i= (7)p'(1—p)"'
E(X) = np, Var(X) = np(1—p)

Uniform: X ~ U{1,...,n} ~ Vie[1,n],PriX=1i=1.
E[X] = 251, Var(X) = 1. |

Geometric: X ~ G(p) PriX=i=(1-p) 'p
E(X)= 5, Var(X) = £

Note: Probability Mass Function = Distribution.



