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Balls in bins

Theorem: ,
Pr[no collision] ~ exp{ %=}, for large enough n.

In particular, Pr[no collision] ~ 1/2 for m?/(2n) ~In(2), i.e.,

m=+/2In(2)n=1.2/n.

E.g., 1.2v20~5.4.
Roughly, Pr[collision] ~ 1/2 for m=+/n. (¢ 9%~ 0.6.)
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The Calculation.
A, = no collision when jth ball is placed in a bin.
PriAilAi_1N---n A =(1-51).
no collision = Ay N---NAm.

Product rule:
PrlAiN---NAn] = Pr[A1]Pr[Az|A1] - PrlAm|A1 NN Am_1]

= Pr[no collision] = (1 - :7) (1 B m; : ) '

In(Pr[no collision]) = Y In(1— lr(]) ~ Y (-=)®

Hence,

_tmm-1)®  m?
n 2 T 2n
() We used In(1 —¢) ~ —e for || < 1.
D142+ 4m-1=(m-1)m/2.
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Approximation

-025 ' ' T n ' ' '
-0.2 -0.15 -0.1 -0.05 [} 0.05 0.1 0.15 0.2

exp{—X}:1—X+%X2+--~%1—X7 for |x] <« 1.

Hence, —x ~ In(1 — x) for |x| <« 1.
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Today’s your birthday, it's my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr[collision] ~ 1/2 if m~1.21/365 ~ 23.
If m= 60, we find that
02
2 x 365

2
Pr[nocollision]zexp{—%}— xp{— } ~0.007.

If m= 366, then Pr[no collision] = 0. (No approximation here!)
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Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:
X = Number of collisions between pairs of balls.

or number of pairs i and j where ball / and ball j are in same bin.
Xjj = 1{balls i,j in same bin}
X=¥jXj
E[Xj] = Prloalls i,j in same bin] = -
Ball i in some bin, ball j chooses that bin with probability 1/n.

ElX|= "G50~ .
Form:\f, EX]=1/2
Markov: PriX > c] < EX.

Prix>1] <X —1/2
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Checksums!

Consider a set of m files.

Each file has a checksum of b bits.

How large should b be for Prshare a checksum] < 10-3?

Claim: b >2.9In(m)+9.

Proof:

Let n = 2° be the number of checksums.

We know Pr[no collision] ~ exp{—m?/(2n)} ~ 1 —m?/(2n). Hence,

Pr[no collision] ~ 1 —107% < m?/(2n) ~ 1073
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Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Prshare a checksum] < 10-3?

Claim: b >2.9In(m)+9.
Proof:
Let n = 2P be the number of checksums.
We know Pr[no collision] ~ exp{—m?/(2n)} ~ 1 —m?/(2n). Hence,
Pr[no collision] ~ 1 —107% < m?/(2n) ~ 1073
& 2n~ mP10% & 26+ ~ m?210

< b+1~=10+2logy(m) =~ 10+2.9In(m).

Note: logs(x) = logo(e) In(x) =~ 1.44In(x).
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Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,
(a) Pr[miss one specific item] ~ e~ 7

(b) Pr[miss any one of the items] < ne~ 7.

BRIAN

WILSON
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Coupon Collector Problem: Analysis.

Event A, = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1 — ,17)

Fail the second time: (1—1)
And so on ... for m times. Hence,
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Coupon Collector Problem: Analysis.

Event A, = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1 — ,17)

Fail the second time: (1—1)
And so on ... for m times. Hence,

PriAm]

In(Pr[Am])

Pr{Am]

~
~

1 1
(1_E)><...

For pm = % we need around nin2 ~ 0.69n boxes.
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Collect all cards?

Experiment: Choose m cards at random with replacement.
Events: E, = fail to get playerk’ , fork=1,...,n
Probability of failing to get at least one of these n players:

pZ:PI’[E1UE2~--UEn]

How does one estimate p? Union Bound:
p=Prl[EfUE;---UE;] < Pr[E1] + Pr|Ez] - - - Pr|Ep].

PriEd]~e 7.k=1,....n.
Plug in and get

33

p<ne
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Hence,
Pr[missing at least one card] < p when m > nIn(g).
Toget p=1/2,set m=nin(2n).

(p<ne"7 <ne (P < n(B)<p)
E.g., =102 = m=530;n=10% = m=7600.
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Time to collect coupons

X-time to get n coupons.
Xj - time to get first coupon. Note: X; =1. E(X;) =1.
Xo - time to get second coupon after getting first.

|

Pr[“get second coupon”|“got milk first coupon”] = =+

E[Xz]? Geometric ! 1| = E[Xp] = & = 47 = ;1.
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Review: Harmonic sum

H(n)—1+1—|— +l~/n1dx—ln(n)
N 2 n~Jox '

1/2

—2 1/4 /5

0 1 2 3 4 ;1 li) &
A good approximation is

H(n) ~ In(n) 4y where v~ 0.58 (Euler-Mascheroni constant).
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What is upper bound on max-load k?

Lemma: Max load is ©(log n) with probability > 1 — ,17
k! > r? for k =2elogn
(Recall k! > (X))

— <0 < (k)"
If logn > 1, then k = 2elog n suffices.
Also: k = ©(logn/loglog n) suffices as well.
kk — ne.
Actually Max load is ©(log n/loglog n) w.h.p.
(W.h.p. - means with probability at least 1 — O(1/n°) for today.)
Better than variance based methods...
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Geometric Distribution: Memoryless - Interpretation

PriX>n+m|X > n|=Pr[X>m],mn>0.

B A
TTT...TTTITTT..... T H

e e e
n m

Pr[X > n+m|X > n]| = Pr[A|B] = Pr[A] = Pr[X > m].

The coin is memoryless, therefore, so is X.
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Sum of Poisson Random Variables.

For X=P(A) and Y = P(u), whatis X+ Y?

Poission? Yes.
What parameter? A + .

Why?
P(A) is limit n — « of B(n,A/n).

Recall Derivation:
break interval into n intervals
and each has arrival with probability 1 /n.

Now:
arrival for X happens with probability A /n
arrival for Y happens with probability it /n

So, we get limit n — o is B(n, (A + w)/n).

Details: both could arrive with probability A /n?.
But this goes to zero as n — .
(Like A2/r? in previous derivation)
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Thus, if we want to guess the value of Y, we choose E[Y].

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?
The idea is to use a function g(X) of the observation to estimate Y.
The simplest function g(X) is a constant that does not depend of X.
The next simplest function is linear: g(X) = a+ bX.

What is the best linear function? That is our next topic.

A bit later, we will consider a general function g(X).
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Example 1: 100 people.
Let (Xn, Yn) = (height, weight) of person n, forn=1,...,100:
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The blue lineis Y =—-114.3+106.5X. (X in meters, Y in kg.)

Best linear fit: Linear Regression.
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The line Y = a+ bX is the linear regression.
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A Bit of Algebra

Y-V = (Y- E[Y]) - 2L (X ~ E[X]).

Hence, E[Y — ¥] = 0. We want to show that E[(Y — ¥)X] = 0.
Note that

E[(Y - V)X]=E[(Y - V)(X - E[X])],
because E[(Y — Y)E[X]] = 0.
Now,

E[(Y = V)(X — EIX])]

cov(X,Y)
= E[(Y—E[YD(X - E[X])] - T[X]E[(X_ EX)(X - E[X])]
cov(X,Y)

“variX] var[X]=0. O

=0 cov(X,Y) -

() Recall that cov(X. Y) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])?].
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Discrete Probability.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =1.
Events: Ac Q.

Simple Total Probability: Pr[B] = Pr[AnB]+ Pr[An B].

Conditional Probability: Pr(A|B] = ZH452.

Simple Product Rule: Pr[An B] = Pr[A|B]Pr[B].

Bayes Rule: Pr[A|B] = 254718

Inference:
Have one of two coins. Flip coin, which coin do you have?
Got positive test result. What is probability you have disease?
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Note: Probability Mass Function = Distribution.



