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The Calculation.
Ai = no collision when i th ball is placed in a bin.

Pr [Ai |Ai−1∩·· ·∩A1] = (1− i−1
n ).

no collision = A1∩·· ·∩Am.

Product rule:
Pr [A1∩·· ·∩Am] = Pr [A1]Pr [A2|A1] · · ·Pr [Am|A1∩·· ·∩Am−1]

⇒ Pr [no collision] =

(
1− 1

n

)
· · ·
(

1−m−1
n

)
.

Hence,

ln(Pr [no collision]) =
m−1

∑
k=1

ln(1− k
n

)≈
m−1

∑
k=1

(−k
n

) (∗)

= −1
n

m(m−1)

2

(†)

≈−m2

2n

(∗) We used ln(1− ε)≈−ε for |ε| � 1.
(†) 1 + 2 + · · ·+ m−1 = (m−1)m/2.
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Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?

With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)
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Using linearity of expectation.

Experiment: m balls into n bins uniformly at random.

Random Variable:
X = Number of collisions between pairs of balls.

or number of pairs i and j where ball i and ball j are in same bin.

Xij = 1{balls i , j in same bin}
X = ∑ij Xij

E [Xij ] = Pr [balls i , j in same bin] = 1
n .

Ball i in some bin, ball j chooses that bin with probability 1/n.

E [X ] = m(m−1)
2n ≈ m2

2n .

For m =
√

n, E [X ] = 1/2

Markov: Pr [X ≥ c]≤ EX
c .

Pr [X ≥ 1]≤ E [X ]
1 = 1/2.
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Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Pr [share a checksum]≤ 10−3?

Claim: b ≥ 2.9 ln(m) + 9.

Proof:

Let n = 2b be the number of checksums.
We know Pr [no collision]≈ exp{−m2/(2n)} ≈ 1−m2/(2n). Hence,

Pr [no collision]≈ 1−10−3⇔m2/(2n)≈ 10−3

⇔ 2n ≈m2103⇔ 2b+1 ≈m2210

⇔ b + 1≈ 10 + 2 log2(m)≈ 10 + 2.9 ln(m).

Note: log2(x) = log2(e) ln(x)≈ 1.44 ln(x).
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Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) Pr [miss one specific item]≈ e−
m
n

(b) Pr [miss any one of the items]≤ ne−
m
n .
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Coupon Collector Problem: Analysis.

Event Am = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1− 1
n )

Fail the second time: (1− 1
n )

And so on ... for m times. Hence,

Pr [Am] = (1− 1
n

)×·· ·× (1− 1
n

)

= (1− 1
n

)m

ln(Pr [Am]) = m ln(1− 1
n

)≈m× (−1
n

)

Pr [Am] ≈ exp{−m
n
}.

For pm = 1
2 , we need around n ln2≈ 0.69n boxes.
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Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:
p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:
p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:
p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:
p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p?

Union Bound:
p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:
p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:
p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:
p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .



Collect all cards?

Thus,

Pr [missing at least one card]≤ ne−
m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p

).

To get p = 1/2, set m = n ln(2n) .

(p ≤ ne−
m
n ≤ ne−ln(n/p) ≤ n( p

n )≤ p.)

E.g., n = 102⇒m = 530;n = 103⇒m = 7600.



Collect all cards?

Thus,

Pr [missing at least one card]≤ ne−
m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p

).

To get p = 1/2, set m = n ln(2n) .

(p ≤ ne−
m
n ≤ ne−ln(n/p) ≤ n( p

n )≤ p.)

E.g., n = 102⇒m = 530;n = 103⇒m = 7600.



Collect all cards?

Thus,

Pr [missing at least one card]≤ ne−
m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p

).

To get p = 1/2, set m = n ln(2n) .

(p ≤ ne−
m
n ≤ ne−ln(n/p) ≤ n( p

n )≤ p.)

E.g., n = 102⇒m = 530;n = 103⇒m = 7600.



Collect all cards?

Thus,

Pr [missing at least one card]≤ ne−
m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p

).

To get p = 1/2, set m = n ln(2n) .

(p ≤ ne−
m
n ≤ ne−ln(n/p) ≤ n( p

n )≤ p.)

E.g., n = 102⇒m = 530;n = 103⇒m = 7600.



Collect all cards?

Thus,

Pr [missing at least one card]≤ ne−
m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p

).

To get p = 1/2, set m = n ln(2n) .

(p ≤ ne−
m
n ≤ ne−ln(n/p) ≤ n( p

n )≤ p.)

E.g., n = 102⇒m = 530;

n = 103⇒m = 7600.



Collect all cards?

Thus,

Pr [missing at least one card]≤ ne−
m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p

).

To get p = 1/2, set m = n ln(2n) .

(p ≤ ne−
m
n ≤ ne−ln(n/p) ≤ n( p

n )≤ p.)

E.g., n = 102⇒m = 530;n = 103⇒m = 7600.



Time to collect coupons

X -time to get n coupons.

X1 - time to get first coupon. Note: X1 = 1. E(X1) = 1.

X2 - time to get second coupon after getting first.

Pr [“get second coupon”|“got milk

—- first coupon

”] = n−1
n

E [X2]? Geometric ! ! ! =⇒ E [X2] = 1
p = 1

n−1
n

= n
n−1 .

Pr [“getting i th coupon|“got i−1rst coupons”] = n−(i−1)
n = n−i+1

n

E [Xi ] = 1
p = n

n−i+1 , i = 1,2, . . . ,n.

E [X ] = E [X1] + · · ·+ E [Xn] =
n
n

+
n

n−1
+

n
n−2

+ · · ·+ n
1

= n(1 +
1
2

+ · · ·+ 1
n

) =: nH(n)≈ n(lnn + γ)
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Pr [“getting i th coupon|“got i−1rst coupons”] = n−(i−1)
n = n−i+1

n

E [Xi ] = 1
p = n

n−i+1 , i = 1,2, . . . ,n.

E [X ] = E [X1] + · · ·+ E [Xn] =
n
n

+
n

n−1
+

n
n−2

+ · · ·+ n
1

= n(1 +
1
2

+ · · ·+ 1
n

) =: nH(n)≈ n(lnn + γ)



Review: Harmonic sum

H(n) = 1 +
1
2

+ · · ·+ 1
n
≈
∫ n

1

1
x

dx = ln(n).

.

A good approximation is

H(n)≈ ln(n) + γ where γ ≈ 0.58 (Euler-Mascheroni constant).
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Simplest..

Load balance: m balls in n bins.

For simplicity: n balls in n bins.

Round robin: load 1 !

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability ≥ 1−δ?

δ = 1
nc for today. c is 1 or 2.
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Balls in bins.

For each of n balls, choose random bin:

Xi balls in bin i .

Pr [Xi ≥ k ]≤ ∑S⊆[n],|S|=k Pr [balls in S chooses bin i]

From Union Bound: Pr [∪iAi ]≤ ∑i Pr [Ai ]

Pr [balls in S chooses bin i] =
( 1

n

)k
and

(n
k

)
subsets S.

Pr[Xi ≥ k ] ≤
(

n
k

)(
1
n

)k

≤ nk

k !

(
1
n

)k

=
1
k !

Choose k , so that Pr [Xi ≥ k ]≤ 1
n2 .

Pr [any Xi ≥ k ]≤ n× 1
n2 = 1

n → max load ≤ k w.p. ≥ 1− 1
n
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Solving for k

Pr [Xi ≥ k ]≤ 1
k ! ≤ 1/n2?

What is upper bound on max-load k?

Lemma: Max load is Θ(logn) with probability ≥ 1− 1
n .

k !≥ n2 for k = 2e logn
(Recall k !≥ ( k

e )k .)

=⇒ 1
k ! ≤

( e
k

)k ≤
(

1
2 logn

)k

If logn ≥ 1, then k = 2e logn suffices.

Also: k = Θ(logn/ log logn) suffices as well.

kk → nc .

Actually Max load is Θ(logn/ log logn) w.h.p.

(W.h.p. - means with probability at least 1−O(1/nc) for today.)

Better than variance based methods...
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Geometric Distribution: Memoryless

Let X be G(p). Then, for n ≥ 0,

Pr [X > n] = Pr [ first n flips are T ] = (1−p)n.

Theorem

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Proof:

Pr [X > n + m|X > n] =
Pr [X > n + m and X > n]

Pr [X > n]

=
Pr [X > n + m]

Pr [X > n]

=
(1−p)n+m

(1−p)n = (1−p)m

= Pr [X > m].
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Expected Value of Integer RV
Theorem: For a r.v. X that takes values in {0,1,2, . . .}, one has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

Proof: One has
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∑
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=
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∑
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Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values {0,1,2, . . .}, one has

E [X ] =
∞

∑
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If X = G(p), then Pr [X ≥ i] = Pr [X > i−1] = (1−p)i−1.

Hence,

E [X ] =
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∑
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(1−p)i−1 =
∞

∑
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(1−p)i =
1

1− (1−p)
=

1
p
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Sum of Poisson Random Variables.

For X = P(λ ) and Y = P(µ), what is X + Y ?

Poission? Yes.
What parameter? λ + µ.

Why?
P(λ ) is limit n→ ∞ of B(n,λ/n).

Recall Derivation:
break interval into n intervals
and each has arrival with probability λ/n.

Now:
arrival for X happens with probability λ/n
arrival for Y happens with probability µ/n

So, we get limit n→ ∞ is B(n,(λ + µ)/n).

Details: both could arrive with probability λ µ/n2.
But this goes to zero as n→ ∞.

(Like λ 2/n2 in previous derivation)
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Linear Regression: Preamble

The “best” guess about Y , if we know only the distribution of Y , is
E [Y ].

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes E [(Y −a)2] is a = E [Y ].

Proof:

Let Ŷ := Y −E [Y ].
Then, E [Ŷ ] = E [Y −E [Y ]] = E [Y ]−E [Y ] = 0.
So, E [Ŷ c] = 0,∀c. Now,

E [(Y −a)2] = E [(Y −E [Y ] + E [Y ]−a)2]

= E [(Ŷ + c)2] with c = E [Y ]−a

= E [Ŷ 2 + 2Ŷ c + c2] = E [Ŷ 2] + 2E [Ŷ c] + c2

= E [Ŷ 2] + 0 + c2 ≥ E [Ŷ 2].

Hence, E [(Y −a)2]≥ E [(Y −E [Y ])2],∀a.
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Hence, E [(Y −a)2]≥ E [(Y −E [Y ])2],∀a.



Linear Regression: Preamble

The “best” guess about Y , if we know only the distribution of Y , is
E [Y ].

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes E [(Y −a)2] is a = E [Y ].

Proof:
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So, E [Ŷ c] = 0,∀c. Now,

E [(Y −a)2] = E [(Y −E [Y ] + E [Y ]−a)2]

= E [(Ŷ + c)2] with c = E [Y ]−a
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So, E [Ŷ c] = 0,∀c. Now,

E [(Y −a)2] = E [(Y −E [Y ] + E [Y ]−a)2]
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Then, E [Ŷ ] = E [Y −E [Y ]] = E [Y ]−E [Y ] = 0.
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Hence, E [(Y −a)2]≥ E [(Y −E [Y ])2],∀a.



Linear Regression: Preamble

The “best” guess about Y , if we know only the distribution of Y , is
E [Y ].

If “best” is Mean Squared Error.

More precisely, the value of a that minimizes E [(Y −a)2] is a = E [Y ].

Proof:
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Then, E [Ŷ ] = E [Y −E [Y ]] = E [Y ]−E [Y ] = 0.
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Let Ŷ := Y −E [Y ].
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Linear Regression: Preamble

Thus, if we want to guess the value of Y , we choose E [Y ].

Now assume we make some observation X related to Y .

How do we use that observation to improve our guess about Y?

The idea is to use a function g(X ) of the observation to estimate Y .

The simplest function g(X ) is a constant that does not depend of X .

The next simplest function is linear: g(X ) = a + bX .

What is the best linear function? That is our next topic.

A bit later, we will consider a general function g(X ).
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Linear Regression: Motivation

Example 1: 100 people.

Let (Xn,Yn) = (height, weight) of person n, for n = 1, . . . ,100:

E[Y ]

Y

X

The blue line is Y =−114.3 + 106.5X . (X in meters, Y in kg.)

Best linear fit: Linear Regression.
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Motivation

Example 2: 15 people.

We look at two attributes: (Xn,Yn) of person n, for n = 1, . . . ,15:

The line Y = a + bX is the linear regression.
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LLSE

LLSE [Y |X ] - best guess for Y given X .

Theorem
Consider two RVs X ,Y with a given distribution Pr [X = x ,Y = y ].
Then,

L[Y |X ] = Ŷ = E [Y ] +
cov(X ,Y )

var(X )
(X −E [X ]).

Proof 1:
Y − Ŷ = (Y −E [Y ])− cov(X ,Y )

var [X ] (X −E [X ]). E [Y − Ŷ ] = 0 by linearity.

Also, E [(Y − Ŷ )X ] = 0, after a bit of algebra. (next slide)

Combine brown inequalities: E [(Y − Ŷ )(c + dX )] = 0 for any c,d .
Since: Ŷ = α + βX for some α,β , so ∃c,d s.t. Ŷ −a−bX = c + dX .
Then, E [(Y − Ŷ )(Ŷ −a−bX )] = 0,∀a,b. Now,

E [(Y −a−bX )2] = E [(Y − Ŷ + Ŷ −a−bX )2]

= E [(Y − Ŷ )2] + E [(Ŷ −a−bX )2] + 0≥ E [(Y − Ŷ )2].

This shows that E [(Y − Ŷ )2]≤ E [(Y −a−bX )2], for all (a,b).
Thus Ŷ is the LLSE.



LLSE

LLSE [Y |X ] - best guess for Y given X .
Theorem

Consider two RVs X ,Y with a given distribution Pr [X = x ,Y = y ].
Then,

L[Y |X ] = Ŷ = E [Y ] +
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Then, E [(Y − Ŷ )(Ŷ −a−bX )] = 0,∀a,b. Now,

E [(Y −a−bX )2] = E [(Y − Ŷ + Ŷ −a−bX )2]
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Y − Ŷ = (Y −E [Y ])− cov(X ,Y )

var [X ] (X −E [X ]). E [Y − Ŷ ] = 0 by linearity.
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Y − Ŷ = (Y −E [Y ])− cov(X ,Y )

var [X ] (X −E [X ]). E [Y − Ŷ ] = 0 by linearity.
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A Bit of Algebra

Y − Ŷ = (Y −E [Y ])− cov(X ,Y )
var [X ] (X −E [X ]).

Hence, E [Y − Ŷ ] = 0. We want to show that E [(Y − Ŷ )X ] = 0.

Note that
E [(Y − Ŷ )X ] = E [(Y − Ŷ )(X −E [X ])],

because E [(Y − Ŷ )E [X ]] = 0.

Now,

E [(Y − Ŷ )(X −E [X ])]

= E [(Y −E [Y ])(X −E [X ])]− cov(X ,Y )

var [X ]
E [(X −E [X ])(X −E [X ])]

=(∗) cov(X ,Y )− cov(X ,Y )

var [X ]
var [X ] = 0.

(∗) Recall that cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] and
var [X ] = E [(X −E [X ])2].
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Discrete Probability.

Probability Space: Ω, Pr : Ω→ [0,1], ∑ω∈Ω Pr(w) = 1.

Events: A⊂ Ω.

Simple Total Probability: Pr [B] = Pr [A∩B] + Pr [A∩B].

Conditional Probability: Pr [A|B] = Pr [A∩B]
Pr [B] .

Simple Product Rule: Pr [A∩B] = Pr [A|B]Pr [B].

Bayes Rule: Pr [A|B] = Pr [B|A]Pr [B]
Pr [B]

Inference:
Have one of two coins. Flip coin, which coin do you have?
Got positive test result. What is probability you have disease?
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Random Variables
Random Variables: X : Ω→ R.

Distribution: Pr [X = a] = ∑ω:X (ω)=a Pr(ω)

X and Y independent ⇐⇒ all associated events are independent.
Expectation: E [X ] = ∑a aPr [X = a] = ∑ω∈Ω X (ω)Pr(ω).

Linearity: E [X + Y ] = E [X ] + E [Y ].

Variance: Var(X ) = E [(X −E [X ])2] = E [X 2]− (E(X ))2

For independent X ,Y , Var(X + Y ) = Var(X ) + Var(Y ).
Also: Var(cX ) = c2Var(X ) and Var(X + b) = Var(X ).

Poisson: X ∼ P(λ ) Pr [X = i] = e−λ λ i

i! .
E(X ) = λ , Var(X ) = λ .

Binomial: X ∼ B(n,p) Pr [X = i] =
(n

i

)
pi (1−p)n−i

E(X ) = np, Var(X ) = np(1−p)
Uniform: X ∼ U{1, . . . ,n} ∀i ∈ [1,n],Pr [X = i] = 1

n .
E [X ] = n+1

2 , Var(X ) = n2−1
12 .

Geometric: X ∼G(p) Pr [X = i] = (1−p)i−1p
E(X ) = 1

p , Var(X ) = 1−p
p2

Note: Probability Mass Function ≡ Distribution.
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For independent X ,Y , Var(X + Y ) = Var(X ) + Var(Y ).
Also: Var(cX ) = c2Var(X ) and Var(X + b) = Var(X ).

Poisson: X ∼ P(λ ) Pr [X = i] = e−λ λ i

i! .
E(X ) = λ , Var(X ) = λ .

Binomial: X ∼ B(n,p) Pr [X = i] =
(n

i

)
pi (1−p)n−i

E(X ) = np, Var(X ) = np(1−p)
Uniform: X ∼ U{1, . . . ,n} ∀i ∈ [1,n],Pr [X = i] = 1

n .

E [X ] = n+1
2 , Var(X ) = n2−1

12 .
Geometric: X ∼G(p) Pr [X = i] = (1−p)i−1p

E(X ) = 1
p , Var(X ) = 1−p

p2

Note: Probability Mass Function ≡ Distribution.
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