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1. Examples
2. Events

3. Continuous Random Variables
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What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any x € [0, 1], one has Pr[X = x] =0.

How should we then describe ‘choosing uniformly at random in [0,1]'?
Here is the way to do it:

PriXelabl]=b—aV0<a<b<i1.

Makes sense: b— a is the fraction of [0, 1] that [a, b] covers.
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Thus,
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Pr{UnAn] = Y. Pr{An].

Many subsets of [0, 1] are of this form. Thus, the probability of those
sets is well defined. We call such sets events.
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Define F(x) = Pr[X < x].

Then we have Pr[X € (a,b]] = Pr[X < b] — Pr[X < a] = F(b) — F(a).
Thus, F(-) specifies the probability of all the events!
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Discrete Approximation: Fix N> 1 andlete=1/N.
Define Y=neif (n—1)e< X <neforn=1,...,N.
Then | X — Y| <eand Yis discrete: Y € {¢,2¢,...,Ne}.
Also, Pr[Y = ne] = & forn=1,...,N.

Thus, X is ‘almost discrete.
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Let F(x) be a nondecreasing function with F(—e) =0 and F(+o) = 1.
Define X by Pr[X € (a,b]] = F(b) — F(a) for a < b. Also, for
a<bi<ap<by<---<bp,
PriX € (a1, b1]U (a2, bo] U (an, bn]]
= Pr[X € (ay,b1]]+---+ Pr[X € (an, bn]|
= F(b1)—F(a1)+---+ F(bn) — F(an).

Let f(x) = L F(x). Then,

PriX e (x,x+¢€]] = F(x+¢€)— F(x) = f(x)e.

Here, F(x) is called the cumulative distribution function (cdf) of X and
f(x) is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X, we will write them
Fx(x) and fx(x).
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An illustration of Pr[X € (x,x+¢€)] = fx(x)e:

Rectangle = f(x)e
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Thus, the pdf is the ‘local probability by unit length.
It is the ‘probability density.
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Example: CDF

Example: hitting random location on gas tank.
Random location on circle.

Random Variable: Y distance from center.
Probability within y of center:

area of small circle

< =
PriY <yl area of dartboard
2
_ W e
= p y .

Hence,
0 fory <0
Fy(y)=PrlY <y]={ y? for0<y<i1
1 for y > 1
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Calculation of event with dartboard..

Probability between .5 and .6 of center?

Recall CDF.
0 fory <0
Fy(y)=Prl[Y<y]=< y? for0<y<i
1 fory > 1
Pri0.5<Y <0.6] = Pr[Y<0.6]—Pr[Y <0.5]

—  Fy(0.6)— Fy(0.5)
~ .36-.25
= 1
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Example: “Dart” board.

Recall that
0 fory <0
Fy(y)=PrlY <y]={ y? for0<y<1
1 for y > 1
0 fory <0
fr(y)=Fy(y)=q 2y for0<y<t
0 fory >1

The cumulative distribution function (cdf) and probability distribution
function (pdf) give full information.
Use whichever is convenient.
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Expo(1)
The exponential distribution with parameter A > 0 is defined by
fx(x) = Ae M 1{x >0}

0, ifx<0
FX(X):{ 1—e ™, ifx>0.
1 4
08 |
ol A=1 Fx(z) o |
0.7 2 )‘u 5 \:.’
06 25
05 Y 2 Fxia)
04
04 ' Fx(x)
02 fx(x) '
0.1 05
05 1|:| 5 05 cl,

Note that Pr[X > t] = e *! for t > 0.
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Continuous Random Variables

Continuous random variable X, specified by

1. Fx(x)=Pr[X < x] for all x.
Cumulative Distribution Function (cdf).
Prla< X < b] = Fx(b) — Fx(a)
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2. Or fx(x) , where Fx(x) = J*_ fx(u)du or fy(x) = 2Exx)).
Probability Density Function (pdf).
Prla< X < b] = [? fx(x)dx = Fx(b) — Fx(a)
2.1 fx(x)>0forall x € R.
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Multiple Continuous Random Variables
One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx.y(x,y)axdy = PriX € (x,x+dx), Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set A R2. Then

fey(X.y) = |1A|1{(x,y) € A}

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh
size € and Pr[X = me, Y = ne| = fx y(me, ne)e?.

Extension: X = (Xj,..., X,) with #(x).



Example of Continuous (X, Y)



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.




Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

Thus, fx y(X,y) = 21{x2+y2 <1}.



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

Thus, fx y(X,y) = 21{x2+y2 <1}.
Consequently,

Pr[X>0,Y>0]=



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

Thus, fx y(X,y) = 21{x2+y2 <1}.
Consequently,

1
Pr[X>0,Y>O]:Z



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

Thus, fx y(X,y) = 21{x2+y2 <1}.
Consequently,

1
Pr[X>0,Y>O]:Z

PriX <0,Y>0]=



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

Thus, fx y(X,y) = 21{x2+y2 <1}.
Consequently,

Pr[X>0,Y>0]=

PriX <0,Y>0]=

B2 D=



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

X
Thus, fx y(X,y) = 21{x2+y2 <1}.
Consequently,
Pr[X>0,Y>O]:%
Pr[X<0,Y>O]:%

Prix?+Y? <r?]=



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

Thus, fx y(X,y) = 21{x2+y2 <1}.
Consequently,

Pr[X>0,Y>O]:1

2
Pr[X<0,Y>O]:%

2
Prixt+y2 <= "



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

X
Thus, fx y(X,y) = 21{x2+y2 <1}.
Consequently,
Pr[X>0,Y>0]= 1
PriX <0,Y>0]= %
ar?

PriX?+ Y2 < r?] =

f2



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

ThUS, fX,Y(ng)

Consequently,

X
_ 1 2, 2
= 1{x*+ys <1}
Pr[X>0,Y>0]= 1
PriX <0,Y>0]= %
ar?

PriX?+ Y2 < r?] =

Prix > Y] =

f2



Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

ThUS, fX,Y(ng)

Consequently,

X
_ 1 2, 2
= 1{x*+ys <1}
Pr[X>0,Y>0]= 1
PriX <0,Y>0]= %
ar?

PriX?+ Y2 < r?] =

PrX> Y] =1

f2



Independent Continuous Random Variables



Independent Continuous Random Variables

Definition:



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem:



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = i (xX)fy (y).



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = i (xX)fy (y).



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if
PriXe A Y € Bl =Pr[X € A|Pr[Y € B],VA,B.
Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = i (xX)fy (y).

Note: fx(x) (fy(y)) is (marginal) distribution of X (Y).



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if
PriXe A Y € Bl =Pr[X € A|Pr[Y € B],VA,B.
Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = i (xX)fy (y).

Note: fx(x) (fy(y)) is (marginal) distribution of X (Y).
Proof:



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if
PriXe A Y € Bl =Pr[X € A|Pr[Y € B],VA,B.
Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = i (xX)fy (y).

Note: fx(x) (fy(y)) is (marginal) distribution of X (Y).
Proof: Intervals: A= [x,x+dx], B=[y,y+dy].



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = i (xX)fy (y).

Note: fx(x) (fy(y)) is (marginal) distribution of X (Y).
Proof: Intervals: A= [x,x+dx], B=[y,y+dy].
PriXe A Y e Bl=Pr[X e Al x Pr[Y € B]



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = i (xX)fy (y).

Note: fx(x) (fy(y)) is (marginal) distribution of X (Y).
Proof: Intervals: A= [x,x+dx], B=[y,y+dy].

PriXe A Y e Bl=Pr[X e Al x Pr[Y € B]
~ fx(x) dx x fy(y) dy



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = i (xX)fy (y).

Note: fx(x) (fy(y)) is (marginal) distribution of X (Y).
Proof: Intervals: A= [x,x+dx], B=[y,y+dy].
PriXe A Y e Bl=Pr[X e Al x Pr[Y € B]
~ fx(x) dx x fy(y) dy
= ix(X)fy(y) dxdy.



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if

PriX € A,Y € B] = Pr[X € A|Pr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(x,y) = i (xX)fy (y).

Note: fx(x) (fy(y)) is (marginal) distribution of X (Y).
Proof: Intervals: A= [x,x+dx], B=[y,y+dy].
PriXe A Y e Bl=Pr[X e Al x Pr[Y € B]
~ fx(x) dx x fy(y) dy
= ix(X)fy(y) dxdy.



Independent Continuous Random Variables

Definition: The continuous RVs X and Y are independent if
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if
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Thus, fx y(X,y) = fx(X)fy (¥).
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Mutual Independence.

Definition: The continuous RVs Xj,..., X, are mutually independent
if

Pr(X; € A1,...,Xn € An] = Pr[Xi € Aq]-- Pr[Xn € An),YA1,..., An.

Theorem: The continuous RVs Xj,..., X, are mutually independent if
and only if

(X1, Xn) = fx, (X1) - fx, (Xn).-

Proof: As in the discrete case.
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Conditional density.

Conditional Density: fyy(x, ).
Conditional Probability: Pr(X € A|Y € B] = 213278

fx.y(x,y)dxdy

PriX e [x,x+dx]|Y €ly,y +dyll = =75

_ Ixy(xy)  fxy(xy)
fX‘Y(X’y) TN T T v(xy)

Corollary: For independent random variables, fx|y(x,y) = fx(x).
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Independent Random Variables?

Uniform on a rectangle? Independent?

o« Pr[X e Al

fx)y (x,y) = fx(x) for all y

Also: Pr[X € A, Y € B] « Area of rectangle o« Pr[X € A] x Pr[Y € B].
Independent!

Uniform on a circle? Independent?

fxjy(x,-5)

fxiy (x.0) Not independent!
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o

‘ Continuous Probability 1 ‘

. pdf: PriX e (x,x+8]] = fx(x)d.

CDF: Pr{X < x] = Fx(x) = [* fx(y)dy.
Ula,b]: fx(x) = gz1{a< x < b} Fx(x) =2 fora< x <b.

a a
Expo(A):
fx(x) = Aexp{—Ax}1{x > 0}; Fx(x) =1 —exp{—Ax} for x <0.

Target: fx(x) =2x1{0 < x <1}; Fx(x) =x2for 0 < x <1.

. Joint pdf: PriX € (x,x+38),Y = (y,y +8)) = fx. y(x,y)82.

x.y(%.y)
fy(y) -

6.1 Conditional Distribution: fxy(x,y) =
6.2 Independence: fyy(x,y) = fx(x)



