Review.	Counting.	Combinatorial Proofs.
After Midterm content. See lecture 13, for pre-Midterm review.	First Rule: Enumerate objects with sequence of choices. Number of Objects: $n_1 \times n_2 \dots$ Example: Poker deals. Second Rule: Divide out if by ordering of same objects. Example: Poker hands. Orderings of ANAGRAM. Sum Rule: If sets of objects disjoint add sizes. Example: Hands with joker, hands without. Inclusion/Exclusion: For arbtrary sets <i>A</i> , <i>B</i> . $ A \cup B = A + B - A \cap B $ Example: 10 digit numbers with 9 in the first or second digit.	Theorem: $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$. Proof: How many size <i>k</i> subsets of $n+1$? $\binom{n+1}{k}$. How many size <i>k</i> subsets of $n+1$? How many contain the first element? Choose first element, need to choose $k-1$ more from remaining <i>n</i> elements. $\Rightarrow \binom{n}{k-1}$ How many don't contain the first element ? Need to choose <i>k</i> elements from remaining <i>n</i> elts. $\Rightarrow \binom{n}{k}$ So, $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$.
Uncountability/Undecidability.	CS70: Review of Probability.	Discrete Probability Probability Space: Ω , $Pr[\omega] \ge 0$, $\sum_{\omega} Pr[\omega] = 1$. Bandom Variable: Function on Sample Space: $X : \Omega \rightarrow B$
Natural Numbers are countable. Definition.		Distribution: Function $Pr[X = a] \ge 0$. $\sum_{a} Pr[X = a] = 1$.
Rationals are countable cuz bijection.		Expectation: $E[X] = \sum_{\omega} X(\omega) \times Pr[\omega] = \sum_{a} a \times Pr[X = a].$
Reals are not.		Many Random Variables: each one function on a sample space.
Why? Diagonalization.	Probability Review	Joint Distributions: Function $Pr[X = a, Y = b] \ge 0$.
Halt is undecidable.		$\sum_{a,b} \Pr[X=a, Y=b] = 1.$
Why? Diagonalization.		Linearity of Expectation: $E[X + Y] = E[X] + E[Y]$.
Reductions from Halt give more undecidable problems.		Applications: compute expectations by decomposing.
Reductions use program for problem A to solve HALT. Concept: Can programatically modify <i>text</i> of input program (to HALT). Concept: Can call program A.		Indicators: Empty bins, Fixed points. Time to Coupon: Sum times to "next" coupon. Geometric distribution vs. direct. Birthday Paradox with expectation (and without.)
		Y = f(X) is Random Variable. Distribution of Y from distribution of X: $Pr[Y = y] = \sum_{x \in f^{-1}y} Pr[X = x].$

Tail Bounds: WWLN	Random Variables so far.	Continuous Probability
Variance: $var[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2$ > Fact: $var[X + b] = a^2 var[X]$ > Sum: X, Y, Z pairwise ind.> Markov: $Pr[X \ge a] \le E[f(X)]/f(a)$ where> Chebyshev: $Pr[X - E[X] \ge a] \le var[X]/a^2$ > WLLN: X_m i.i.d.> $\frac{X_1 + \dots + X_n}{n} \approx E[X]$	Probability Space: Ω , $Pr: \Omega \to [0,1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$. Random Variables: $X: \Omega \to R$. Associated event: $Pr[X = a] = \sum_{\omega:X(\omega)=a} Pr(\omega)$ X and Y independent \iff all associated events are independent. Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega) Pr(\omega)$. Linearity: $E[X + Y] = E[X] + E[Y]$. Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent $X, Y, Var(X + Y) = Var(X) + Var(Y)$. Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$. Poisson: $X \sim P(\lambda) E(X) = \lambda$, $Var(X) = \lambda$. Binomial: $X \sim B(n, p) E(X) = np$, $Var(X) = np(1 - p)$ Uniform: $X \sim U\{1,, n\} E[X] = \frac{p+1}{p}, Var(X) = \frac{p^2-1}{12}$. Geometric: $X \sim G(p) E(X) = \frac{1}{p}, Var(X) = \frac{1-p}{p^2}$	1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$. 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y)dy$. 3. $U[a,b]: f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b$. 4. $Expo(\lambda):$ $f_X(x) = \lambda \exp\{-\lambda x\} 1\{x \ge 0\}; F_X(x) = 1 - \exp\{-\lambda x\} \text{ for } x \ge 0$. 5. Target: $f_X(x) = 2x1\{0 \le x \le 1\}; F_X(x) = x^2 \text{ for } 0 \le x \le 1$. 6. Joint pdf: $Pr[X \in (x, x + \delta), Y = (y, y + \delta)] = f_X, y(x, y)\delta^2$. 6.1 Conditional Distribution: $f_X _Y(x, y) = \frac{f_X, y(x, y)}{f_Y(y)}$. 6.2 Independence: $f_X _Y(x, y) = f_X(x)$
Continuous Probability: Moments.	Distributions.	Markov Chains
 Expectation. E[X] = ∫[∞]_{-∞} xf(x)dx. Variance. E[(X - E[X])²] Same as discrete. Markov? Sure. Chebshev? Sure. 	× ~ U[a,b] f _X (x) = $\frac{1}{(b-a)}$ 1{x ∈ [a,b]}. F(x) = min($\frac{x-a}{b-a}$ 1{x ∈ [a,b]}, 1.0) E[X] = $\frac{b-a}{2}$. Var(X) = $\frac{(b-a)^2}{12}$. × ~ Expo(λ) f _X (x) = λe ^{-λx} 1{x ≥ 0} F _X (x) = 1 - e ^{λx} . E[X] = $\frac{1}{\lambda}$. Var[X] = $\frac{1}{\lambda^2}$ X = $\lim_{n\to\infty} \frac{1}{n} X G(\lambda/n)$ Pr[X > s + t X > s] = Pr[X > t]: Memoryless. × ~ N(µ, σ). f(x) = $\frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2} 2$ F(x) = Φ(x) = $\int_{-\infty}^{x} f(x) dx$ CLT: A _n = $\frac{x_1+x_n}{n}$, E[X] = µ, and Var(X) = σ ² . $\lim_{n\to\infty} A_n \to N(µ, σ)$ $\frac{X-\mu}{\sigma} \sim N(0, 1)$.	 Markov Chain: Pr[X_{n+1} = j X₀,,X_n = i] = P(i,j) FSE: β(i) = 1 + Σ_j P(i,j)β(j); α(i) = Σ_j P(i,j)α(j). π_n = π₀Pⁿ π is invariant iff πP = π Irreducible ⇒ one and only one invariant distribution π Irreducible ⇒ fraction of time in state <i>i</i> approaches π(i) Irreducible + Aperiodic ⇒ π_n → π. Calculating π: One finds Pπ = π and π is distribution.

