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Natural Numbers are countable. Definition.

Rationals are countable cuz bijection.

Reals are not.

Why? Diagonalization.

Halt is undecidable.

Why? Diagonalization.

Reductions from Halt give more undecidable problems.
Reductions use program for problem A to solve HALT.

Concept: Can programatically modify text of input program (to HALT).
Concept: Can call program A.
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Geometric distribution vs. direct.
Birthday Paradox with expectation (and without.)

Y = f(X) is Random Variable.
Distribution of Y from distribution of X:
PriY =y]= erHy Pr(X = x].
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Variance: var[X]:= E[(X — E[X])?] = E[X?] - E[X]?
Fact: var[aX + b] = &var[X]

Markov: Pr[X > a] < E[f(X)]/f(a) where ...
Chebyshev: Pr[|X — E[X]| > a] < var[X]/a®

>
>
» Sum: X,Y,Z pairwise ind. = var[X+Y+Z]="--
>
>
> WLLN: Xpiid. = X522 o £[X]



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)

X and Y independent < all associated events are independent.



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)
X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)
X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)
X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)
X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].
Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)
X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].
Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)
X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].
Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

Poisson: X ~ P(4)



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)
X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].
Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

Poisson: X ~ P(1) E(X)=A, Var(X)=A.



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.

Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)

X and Y independent < all associated events are independent.

Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

Poisson: X ~ P(1) E(X)=A, Var(X)=A.

Binomial: X ~ B(n,p)



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.

Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)

X and Y independent < all associated events are independent.

Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

Poisson: X ~ P(1) E(X)=A, Var(X)=A.

Binomial: X ~ B(n,p) E(X) = np, Var(X)=np(1—p)



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Y peq Pr(w) =1.

Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)

X and Y independent < all associated events are independent.

Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

Poisson: X ~ P(1) E(X)=A, Var(X)=A.

Binomial: X ~ B(n,p) E(X) = np, Var(X)=np(1—p)

Uniform: X ~ U{1,...,n}



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =1
Random Variables: X : Q — R.
Associated event: PriX = a] = ¥y x(w)=a Pr(®)
X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

Poisson: X ~ P(1) E(X)=A, Var(X)=A.

Binomial: X ~ B(n,p) E(X) = np, Var(X)=np(1—p)

1

Uniform: X ~ U{1,...,n} E[X] =21, Var(X) = &5



Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =1

Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)

X and Y independent < all associated events are independent.

Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).
Linearity: E[X+ Y] = E[X]+ E[Y].

Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?
For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).
Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).

Poisson: X ~ P(1) E(X)=A, Var(X)=A.

Binomial: X ~ B(n,p) E(X) = np, Var(X)=np(1—p)

Uniform: X ~ U{1,...,n} E[X] = 2§, Var(X) = 7.

Geometric: X ~ G(p)




Random Variables so far.

Probability Space: Q, Pr:Q — [0,1], Ypeq Pr(w) =1
Random Variables: X : Q — R.

Associated event: PriX = a] = ¥y x(w)=a Pr(®)
X and Y independent < all associated events are independent.
Expectation: E[X] =Y aPr[X = a] = Y. yecq X(0)Pr(o).

Linearity: E[X+ Y] = E[X]+ E[Y].
Variance: Var(X) = E[(X — E[X])?] = E[X?] — (E(X))?

For independent X, Y, Var(X+Y) = Var(X)+ Var(Y).

Also: Var(cX) = ¢?Var(X) and Var(X +b) = Var(X).
Poisson: X ~ P(1) E(X)=A, Var(X)=A.
Binomial: X ~ B(n,p) E(X) = np, Var(X)=np(1—p)
Uniform: X ~ U{1,...,n} E[X] = 2§, Var(X) =7
Geometric: X ~ G(p) E(X) = J, Var(X) = p;f




Continuous Probability

1. pdf:



Continuous Probability

1. pdf: PriX € (x,x+8]] = fx(x)$6.



Continuous Probability

1. pdf: PriX € (x,x+8]] = fx(x)$6.
2. CDF:



Continuous Probability

1. pdf: PriX € (x,x+8]] = fx(x)$6.
2. CDF: PriX < x] = Fx(x) = [ fx(y)dy.



Continuous Probability

1. pdf: PriX € (x,x+8]] = fx(x)$6.
2. CDF: PriX < x] = Fx(x) = [ fx(y)dy.
3. Ula,b]:



Continuous Probability

1. pdf: PriX € (x,x+8]] = fx(x)$6.
2. CDF: Pr[X < x] = Fx(x) = [*. fx(y)dy.
3. Ula.b]: fx(x) = gz1{a< x < b};



Continuous Probability

1. pdf: PriX € (x,x+8]] = fx(x)$6.
2. CDF: PriX < x] = Fx(x) = [ fx(y)dy.

3. Ula.b]: fx(x) = gz1{a< x < b}; Fx(x) = $=2 fora< x < b.



Continuous Probability

1. pdf: PriX e (x,x+ 8]] = fx(x)8.

2. CDF: Pr[X < x] = Fx(x) = [*_ fx(y)dy.

3. Ula,b]: fx(x) = gz1{a< x < b}; Fx(x) = =2 fora< x < b.
4. Expo(A):



Continuous Probability

P 0 p o~

pdf: Pr[X € (x,x+ 8]] = fx(x)8.
CDF: Pr[X < x] = Fx(x) = [*,, fx(y)dy.
Ula.bl: fx(x) = 5a1{a< x < by Fx(x) = =2 fora< x < b.

Expo(A):
fx(x) = Aexp{—Ax}1{x >0},



Continuous Probability

P 0 p o~

pdf: Pr[X € (x,x+ 6]] = fx(x)é.
CDF: Pr[X < x] = Fx(x) = [*_ fx(y)dy.
Ula,b]: fx(x) = gz1{a< x < b}; Fx(x) = $=2 fora< x < b.

b-a
Expo(1):
fx(x) = Aexp{—Ax}1{x > 0}; Fx(x) =1 —exp{—Ax} for x > 0.



Continuous Probability

1. pdf: PriX € (x,x+8]] = fx(x)$6.

CDF: PriX < x] = Fx(x) = J*. fx(y)dy.

Ula,b]: fx(x) = gz1{a< x < b}; Fx(x) = $=2 fora< x < b.
Expo(1):

fx(x) = Aexp{—Ax}1{x > 0}; Fx(x) =1 —exp{—Ax} for x > 0.
5. Target:

P 0D



Continuous Probability

P 0D

. pdf: Pr[X € (x,x+ d8]] = fx(x)é.

CDF: PriX < x] = Fx(x) = J*. fx(y)dy.

Ula,b]: fx(x) = gz1{a< x < b}; Fx(x) = $=2 fora< x < b.
Expo(1):

fx(x) = Aexp{—Ax}1{x > 0}; Fx(x) =1 —exp{—Ax} for x > 0.
Target: fx(x) =2x1{0 < x <1};
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o

. pdf: Pr[X € (x,x+ d8]] = fx(x)é.

CDF: Pr[X < x] = Fx(x) = [*. fx(y)dy.
Ula.bl: f(x) = gi51{a< X < b} Fx(x) = =3 fora< x < b,

Expo(1):
fx(x) = Aexp{—Ax}1{x > 0}; Fx(x) =1 —exp{—Ax} for x > 0.

Target: fx(x) =2x1{0 < x <1}; Fx(x) =x2for 0 < x < 1.

6. Joint pdf: PriX € (x,x+38),Y = (y,y +8)) = fx y(x,y)5%

6.1 Conditional Distribution: fy|y(x,y) = %25
6.2 Independence: fx y(x,y) = fx(x)
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Distributions.

> X~ Ula,b]
x(X) = 5= a)1{xe [a,b]}. F(x)=min($=21{x € [a,b]},1.0)
EX]=
Var(X)
> X ~ Expo(1)
fx(x) =Ae P 1{x >0} Fx(x)=1-¢€"*
ElX]= 1.
Var[X] = -»
X = limp et X G(A/1)
Pr[X > s+t|X > s] = Pr[X > {]: Memoryless.
> X~ N(u,o). f(x)= %ﬁe—(x—“)zz F(x)=&(x) = [*_ f(x)dx
CLT: A, = X% F[X] =, and Var(X) = 2.
//m,HooAn — N(u,0)
=E ~ N(0,1).

O‘
|| ,\,“
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Markov Chain: Pr[X,.1 =j|Xo,...,Xn=1]= P(i,j)
FSE: B(i) =1+ X; P(i./)B(); ae(i) = X P(7,j)ex(j).-

in = mP"

misinvariantiff tP=n

Irreducible = one and only one invariant distribution 7
Irreducible = fraction of time in state / approaches 7(/)
Irreducible + Aperiodic = n, — 7.

Calculating 7: One finds Pr = & and = is distribution.
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True or False

Q and A are independent. True
Pr[AnB] = Pr[A]+ Pr[B] — Pr[AUB]. True
Pr[A\ B] > Pr[A] — Pr[B]. True

vV v.v Y

X1+"'+Xn)
n

Xi,...,Xplid. = var( = var(X;). False: x 1

v

PriIX — a > b] < ECCAT True

v

X, Xpiid, = %—nﬁ/(o,ﬂ. False: v/n

» X = Expo(A) = Pr[X >5|X >3] = Pr[X > 2]. True:

exX| 7&
exz‘{{_lg}}‘ =exp{—A2}.
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[1] PriXx > 2] < EfE0L.

[2] Pr{|X — E[X]| > 2] < 249
[B1 Xy yPr[Y = y|X =x].
[4] Pr{| 22220 — E[X]| > €] 0
[5] Pr{| Xttt _ E1X]| < g] -1
» WLLN (4) and (5)
» Chebyshev (2)
» Markov’s inequality (1)
> E[Y|X=x] (3)
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1. What is P[A|B]?
PriA|B) = ZHaD = §4
2. What is Pr[B|A]?

Pr{ANB]
PriB|A] = Zlbd = 84

3. Are A and B positively correlated?
No. Pr[AnB] =0.4 < Pr[A|Pr[B] =0.6 x 0.7.
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. Is this Markov chain periodic?

No. The return times to 3 are {3,5,..}: coprime!

. Does n, converge to a value independent of mp? Yes!
10.
11.

Does 1 sr 1{Xm =3} converge as n — «? Yes!
Calculate .

Let a=n(1). Then a=n(5),n(2) =
n(4) =n(2) =0.5a,7(3) =0.57(1) + ( ) a.
Thus, n =[a,0.5a,a,0.5a,a] = [1,0.5,1,0.5,1]a, so a=
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7. lIs this Markov chains irreducible? Yes.

. Is this Markov chain periodic?

No. The return times to 3 are {3,5,..}: coprime!

. Does n, converge to a value independent of mp? Yes!
10.
11.

Does 1 sr 1{Xm =3} converge as n — «? Yes!
Calculate .

Let a=n(1). Then a=n(5),n(2) =
n(4) =n(2) =0.5a,7(3) =0.57(1) + ( ) a.
Thus, n =[a,0.5a,a,0.5a,a] = [1,0.5,1,0.5,1]a, so a=1/4.
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12. Write the first step equations for calculating the mean time from
1to 4.

B(1)=1+0.58(2) +0.55(3)
B(2) =1

B3)=1+B(5
B(5)=1+B(1)

13. Solve these equations.

B(1) = 14+05x1+05x(1+(1+pB(1)))
2.5+0.5B(1).

Hence, (1) =5.
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}f
A

(X.Y) picked uniformly

Answer: Red.

i b\
Given X = x, Y = U[a(x), b(x)]. Thus, E[Y|X = x] = 208,
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1. Find (x,y) so that A and B are independent.

We need
Pr[An B] = Pr[A]|Pr[B]
That is,
02=(y+0.2)x05=0.5y+0.1
Hence,

y=0.2and x=0.3.

2. Find the value of x that maximizes Pr[B|A].
When x = 0.5, Pr[B|A] = 1.
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3. Find o so that X and Y are independent.
We need

Pr[X=0,Y =0] = Pr[X =0]Pr[Y =0]
That is,
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3. Find o so that X and Y are independent.
We need

Pr[X=0,Y =0] = Pr[X=0]Pr[Y =0]

=

That is,
0.1=(0.1+a)x(0.1+0.2) =0.03+0.3c
Hence,
o =0.233

Typically: check PriX=2,Y =0] = Pr[X = 2]Pr[Y =0] and so
on.
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3. Find o so that X and Y are independent.

We need

Pr[X=0,Y =0] = Pr[X =0]Pr[Y =0]
That is,
0.1=(0.1+a)x(0.1+0.2) =0.03+0.3c

[=%

Hence,
o =0.233

Typically: check PriX=2,Y =0] = Pr[X = 2]Pr[Y =0] and so
on.

But: A and B independent < A, B independent.
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3. Find o so that X and Y are independent.
We need
Pr[X =0,Y = 0] = Pr[X = 0]Pr[Y = 0]
That is,

0.1=(0.1+a)x(0.1+0.2) =0.03+0.3c
Hence,
o =0.233

Typically: check PriX=2,Y =0] = Pr[X = 2]Pr[Y =0] and so
on.
But: A and B independent < A, B independent.

Take: A="X=0"and B="Y =07, since only two values for
X, Y
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4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student
solves each question correctly w.p. 0.8 whereas a good student does it
w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1
and 70% of the 10 questions on Midterm 2. What is the expected score
of the student on the final?

g 2(]

©T = 0.8%0.2°
= (14
0.3 \
T0%
/, 0%
g : ( ( 0.60.4°

p := Pr[great|scores] =
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4. A CS70 student is great w.p. 0.3 and good w.p. 0.7. A great student
solves each question correctly w.p. 0.8 whereas a good student does it
w.p. 0.6. One student got right 70% of the 10 questions on Midterm 1
and 70% of the 10 questions on Midterm 2. What is the expected score
of the student on the final?
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