Lecture 7. Outline.

- 1. Isoperimetric inequality for hypercube.
- 2. Modular Arithmetic.

Clock Math!!!

- 3. Inverses for Modular Arithmetic: Greatest Common Divisor.
 Division!!!
- Euclid's GCD Algorithm.A little tricky here!

Hypercube: Can't cut me!

Thm: Any subset *S* of the hypercube where $|S| \le |V|/2$ has $\ge |S|$ edges connecting it to V - S; $|E \cap S \times (V - S)| \ge |S|$

Terminology:

 $(S, V - \overline{S})$ is cut.

 $(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.

Isoperimetry.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

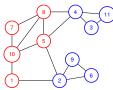
Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree: $\Theta(1/|V|)$. Hypercube: $\Theta(1)$.

Surface Area is roughly at least the volume!

Cuts in graphs.



S is red. V - S is blue.

What is size of cut?

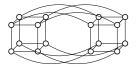
Number of edges between red and blue. 4.

Hypercube: any cut that cuts off x nodes has $\ge x$ edges.

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits

An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x,1x).



3/36

Proof of Large Cuts.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:

5/36

Base Case: $n = 1 \text{ V} = \{0,1\}.$

 $S = \{0\}$ has one edge leaving. $|S| = \phi$ has 0.

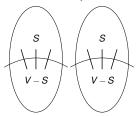
Induction Step Idea

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

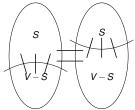
Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.



Case 2: Count inside and across.



Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^{\it n}$

Central object of study.

Induction Step

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$ edges E_x that connect them.

 $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$

 $S = S_0 \cup S_1$ where S_0 in first, and S_1 in other.

Case 1: $|S_0| \le |V_0|/2$, $|S_1| \le |V_1|/2$

Both S_0 and S_1 are small sides. So by induction.

Edges cut in $H_0 \ge |S_0|$. Edges cut in $H_1 \ge |S_1|$.

Total cut edges $\geq |S_0| + |S_1| = |S|$.

8/36

11/36

Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^n$.

Central area of study in computer science!

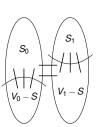
Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^n$

Central object of study.

Induction Step. Case 2.

Thm: For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| &\leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| &\leq |V|/2. \\ &\Rightarrow &\geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| &\leq |V_0|/2 \\ &\Rightarrow &\geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in E_x connect corresponding nodes.

 \implies = $|S_0| - |S_1|$ edges cut in E_x .

Total edges cut:

 $|S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$ $|V_0| = |V|/2 \ge |S|.$ Also, case 3 where $|S_1| \ge |V|/2$ is symmetric.

9/36

Modular Arithmetic.

Applications: cryptography, error correction.

10/36

Key idea for modular arithmetic.

Theorem: If d|x and d|y, then d|(y-x).

Proof:

```
x = ad, y = bd,
(x-y) = (ad-bd) = d(a-b) \implies d(x-y).
```

Theorem: Every number $n \ge 2$ can be represented as a product of

Proof: Either prime, or $n = a \times b$, and use strong induction.

(Uniqueness? Later.)

Day of the week.

Today is Thursday.

What day is it a year from now? on September 17, 2021?

Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from now, day 9 or day 2 or Tuesday.

25 days from now. day 29 or day 1. 29 = (7)4 + 1

two days are equivalent up to addition/subtraction of multiple of 7.

11 days from now is day 1 which is Monday!

What day is it a year from now?

Next year is not a leap year. So 365 days from now.

Day 4+365 or day 369.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

369/7 leaves quotient of 52 and remainder 3. 369 = 7(52) + 5

or September 18, 2020 is a Friday.

Next Up.

16/36

Modular Arithmetic.

Years and years...

80 years from now? 20 leap years. 366×20 days

60 regular years. 365×60 days

Todav is day 4.

It is day $4+366\times20+365\times60$. Equivalent to?

What is remainder of 366 when dividing by 7? $52 \times 7 + 2$.

What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day: $4 + 2 \times 20 + 1 \times 60 = 104$

Remainder when dividing by 7? $104 = 14 \times 7 + 6$.

Or September 18, 2100 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day: $2+2\times 6+1\times 4=18$.

Or Day 6. September 18, 2100 is Saturday.

"Reduce" at any time in calculation!

Clock Math

```
If it is 1:00 now.
```

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5$.

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in $\{12, 1, ..., 11\}$ (Almost remainder, except for 12 and 0 are equivalent.)

Modular Arithmetic: refresher.

```
x is congruent to y modulo m or "x \equiv y \pmod{m}"
```

if and only if (x - y) is divisible by m.

...or x and y have the same remainder w.r.t. m.

...or x = y + km for some integer k.

Mod 7 equivalence classes:

$$\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ldots$$

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

```
or " a \equiv c \pmod{m} and b \equiv d \pmod{m}
     \implies a+b \equiv c+d \pmod{m} and a \cdot b = c \cdot d \pmod{m}
```

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k.

If $b \equiv d \pmod{m}$, then b = d + im for some integer i.

Therefore, a+b=c+d+(k+j)m and since k+j is integer. $\implies a+b \equiv c+d \pmod{m}$.

Can calculate with representative in $\{0, ..., m-1\}$.

17/36

18/36

Notation

 $x \pmod{m}$ or $\mod(x, m)$

```
mod(x,m) = x - |\frac{x}{m}|m
 \left|\frac{x}{m}\right| is quotient.
 mod(29,12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = \frac{1}{4} = 5
Work in this system.
a \equiv b \pmod{m}.
Says two integers a and b are equivalent modulo m.
Modulus is m
6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}.
6 = 3 + 3 = 3 + 10 \pmod{7}.
Generally, not 6 \pmod{7} = 13 \pmod{7}.
But probably won't take off points, still hard for us to read.
```

- remainder of x divided by m in $\{0, ..., m-1\}$.

Proof review. Consequence.

Very different for elements with inverses.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

П For x = 4 and m = 6. All products of 4... $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6) $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2. Can't be 1. No inverse. For x = 5 and m = 6. $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1. $5x = 3 \pmod{6}$ What is x? Multiply both sides by 5. $x = 15 = 3 \pmod{6}$ $4x = 3 \pmod{6}$ No solutions. Can't get an odd. $4x = 2 \pmod{6}$ Two solutions! $x = 2.5 \pmod{6}$

Inverses and Factors.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is $y \mod x$ with $xy = 1 \pmod m$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$.

 $x = 3 2 (nap) d_{2} : 5 \dot{Q} hack \dot{A}(3) = 12 = 5 \pmod{7}$.

For 8 Produlo 12996 multiplicative inverse!

 $X=3\pmod{4}$ (mod 7) "Coron on 3actor $2^{\ell} \stackrel{4}{=} \pmod{7}$, $8k-12\ell$ is a multiple of four for any ℓ and $k \implies$ $8k \not\equiv 1 \pmod{12}$ for any k.

Proof Review 2: Bijections.

```
If gcd(x,m) = 1.
```

19/36

22/36

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

x = 3, m = 4.

 $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$ Oh yeah. f(0) = 0.

Bijection \equiv unique pre-image and same size.

All the images are distinct. \implies unique pre-image for any image.

x = 2, m = 4.

f(1) = 2, f(2) = 0, f(3) = 2Oh yeah. f(0) = 0.

Not a bijection.

Greatest Common Divisor and Inverses.

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo *m*.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains

 $v \equiv 1 \mod m$ if all distinct modulo m.

Each of *m* numbers in *S* correspond to different one of *m* equivalence classes modulo m

⇒ One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, ..., m-1\}, a \neq b$, where $(ax \equiv bx \pmod{m}) \Longrightarrow (a-b)x \equiv 0 \pmod{m}$

Or (a-b)x = km for some integer k.

gcd(x,m)=1

 \implies Prime factorization of m and x do not contain common primes.

 \implies (a-b) factorization contains all primes in m's factorization.

So (a-b) has to be multiple of m.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ...m-1\}$. Contradiction.

21/36

П

Finding inverses.

How to find the inverse?

How to find **if** x has an inverse modulo m?

Find acd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

Very slow.

23/36

Next up. Euclid's Algorithm. Runtime. Euclid's Extended Algorithm. More divisibility **Notation:** d|x means "d divides x" or x = kd for some integer k. **Lemma 1:** If d|x and d|y then d|y and $d|\mod(x,y)$. Proof: $mod(x,y) = x - |x/y| \cdot y$ $= x - |s| \cdot y$ for integer s = $kd - s\ell d$ for integers k, ℓ where x = kd and $y = \ell d$ $= (k - s\ell)d$ Therefore $d \mid \mod(x, y)$. And $d \mid y$ since it is in condition. **Lemma 2:** If d|y and $d| \mod (x, y)$ then d|y and d|x. Proof...: Similar. Try this at home. □ish. **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).**Proof:** x and y have **same** set of common divisors as x and mod(x, y) by Lemma 1 and 2. Same common divisors \implies largest is the same.

Inverses

```
Refresh
    Does 2 have an inverse mod 8? No.
       Any multiple of 2 is 2 away from 0+8k for any k \in \mathbb{N}.
   Does 2 have an inverse mod 9? Yes. 5
     2(5) = 10 = 1 \mod 9.
    Does 6 have an inverse mod 9? No.
       Any multiple of 6 is 3 away from 0+9k for any k \in \mathbb{N}.
        3 = acd(6,9)!
    x has an inverse modulo m if and only if
      acd(x, m) > 1? No.
      gcd(x, m) = 1? Yes.
   Now what?:
     Compute gcd!
     Compute Inverse modulo m.
```

Euclid's algorithm.

28/36

```
GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)).
Hey, what's qcd(7.0)? 7 since 7 divides 7 and 7 divides 0
What's gcd(x,0)? x
(define (euclid x y)
  (if (= y 0)
     (euclid y (mod x y)))) ***
Theorem: (euclid x y) = gcd(x, y) if x \ge y.
Proof: Use Strong Induction.
Base Case: v = 0. "x divides v and x"
           ⇒ "x is common divisor and clearly largest."
Induction Step: mod(x,y) < y \le x when x \ge y
call in line (***) meets conditions plus arguments "smaller"
  and by strong induction hypothesis
  computes gcd(v, mod(x, v))
which is gcd(x, y) by GCD Mod Corollary.
```

29/36

```
Divisibility...
    Notation: d|x means "d divides x" or
          x = kd for some integer k.
    Fact: If d|x and d|y then d|(x+y) and d|(x-y).
    Is it a fact? Yes? No?
    Proof: d|x and d|y or
          x = \ell d and y = kd
     \implies x - y = kd - \ell d = (k - \ell)d \implies d(x - y)
                                                                       Modular Arithmetic Lecture in a minute.
    Modular Arithmetic: x \equiv y \pmod{N} if x = y + kN for some integer k.
```

```
For a \equiv b \pmod{N}, and c \equiv d \pmod{N},
 ac = bd \pmod{N} and a+b=c+d \pmod{N}.
Division? Multiply by multiplicative inverse.
a \pmod{N} has multiplicative inverse, a^{-1} \pmod{N}.
 If and only if gcd(a, N) = 1.
Why? If: f(x) = ax \pmod{N} is a bijection on \{1, ..., N-1\}.
 ax - ay = 0 \pmod{N} \implies a(x - y) is a multiple of N.
 If acd(a, N) = 1.
  then (x-y) must contain all primes in prime factorization of N,
   and is therefore be bigger than N.
Only if: For a = xd and N = yd,
   any ma + kN = d(mx - ky) or is a multiple of d.
 and is not 1.
```