CS70: Lecture 9. Outline.

Isomorphisms.

Bijection:

Xor

Computer Science:

f(x) = ax (mod m) if gcd(a,m) =1. 1 - True
Simplified Chinese Remainder Theorem: 0 - False
There is a unique x (mod mn) where x =a (mod m)and x =b 1vi=1
1. Public Key Cryptography (mod n) and ged(n,m) = 1. 1v0=1
2. RSA system Bijection between (a (mod n),b (mod m)) and x (mod m)n. 8v (1) :8
v0=
2.1 Efficiency: Repeated Squaring. Consider m=5, n=29, then if (a,b) = (3,7) then x =43 (mod 45). )
2.2 Correctness: Fermat’'s Theorem. Consider (&,b') = (2,4), then x = 22 (mod 45) A® B - Exclusive or.
2.3 Construction. ' o : 1©1=0
) Now consider: (a,b)+(&,b') =(0,2). 190=1
3. Warnings. . 0®p1=1
What is x where x =0 (mod 5) and x =2 (mod 9)? 060—0
Try 43+22 =65=20 (mod 45). Note: Also modular addition modulo 2!
Isit0 (mod 5)? Yes! Isit2 (mod 9)? Yes! {0,1} is set. Take remainder for 2.
Isomorphism: Property: Ao Ba& B=A.
the actions under (mod 5), (mod 9) Bycases: 1®@1®1=1. ...
correspond to actions in (mod 45)!
Cryptography ... Public key crypography. Is public key crypto possible?
m= D(E(m,s),s) Secret s

Example:

One-time Pad: secret s is string of length |m|.

m=10101011110101101

E(m,s) — bitwise m&® s.
D(x,s) — bitwise x @ s.
Works because m@ s® s =m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!

Uses up one time pad..or less and less secure.

Message m

m= D(E(m,K),k)

Private: k Public: K Message m
(m,K) E(m,K)
Alice @
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is this even possible?

We don't really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1).!

Compute d=¢e"" mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).

Decoding: mod (y9, N).

Does D(E(m)) = m® =m mod N?
Yes!

"Typically small, say e = 3.




lterative Extended GCD.

Example: p=7,g=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
egcd(7,60).

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!
E(2) =2° =27 =128 (mod 77) =51 (mod 77)

Repeated squaring.

Notice: 43 =32+ 842+ 1. 5143 = 5132+8+2+1 _ 5132.518.512. 511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)%(51) = 2601 = 60 (mod 77)

514 = (512) % (512) = 6060 = 3600 = 58 (mod 77)

7(0)+60(1) = 60 5143 518 = (514) « (514) = 58 +58 = 3364 = 53 (mod 77)
D(51) =514 (mod 77)
7(1)+60(0) = 7 uh oh! 5116 = (518)x(518) = 53%53 = 2809 = 37 (mod 77)
7(-8)+60(1) = 4 5132 — (5116) % (5116) = 37 %37 = 1369 = 60 d 77
(~8)+60(1) Obvious way: 43 multiplications. Ouch. ( )x( ) * (mo )
7(9)+60(-1) = 3 i o 5 more multiplications.
7(-17)+60(2) = 1 In general, O(N) or O(2") multiplications! ) o
5132.518.512.511 = (60) % (53) % (60) * (51) = 2 (mod 77).
Decoding got the message back!
Confirm: —119+120 = 1 Repeated Squaring took 9 multiplications versus 43.
d=e'=-17=43= (mod 60)
Recursive version. Repeated Squaring: x¥ RSA is pretty fast.
(define (power x y m)
(if (=y 1) Repeated squaring O(log y) multiplications versus y!!!
(mod x m) y. 1 2 4 ollogy| oL .
(let ((x-to-evened-y (power (square x) (/ y 2) m))) 1. x¥: Compute x',x,x%, ..., x . Modular Exponentiation: x¥ mod N. All n-bit numbers.

(1f (evenp y)
x-to-evened-y
(mod (* x x-to-evened-y) m )))))

Claim: Program correctly computes x¥.
Base: x' = x (mod m).
XY = x2(y/2)+ mod(y.2) — (X2)y/2Xy mod 2 (mod m).

The program computes the last expression using a recursive call with
x2 and y/2.

Note: y/2 is integer division.

2. Multiply together x’ where the (log(/))th bit of y (in binary) is 1.

Example: 43 = 101011 in binary.
X8 = x324 x8y x2 5 x1.

Modular Exponentiation: x¥ mod N. All n-bit numbers. Repeated
Squaring:
O(n) multiplications.
O(n?) time per multiplication.
= O(n®) time.
Conclusion: x¥ mod N takes O(n®) time.

O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

For 512 bits, a few hundred million operations.

Easy, peasey.




Decoding.

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e" (mod (p—1)(g—1)).
Want: (m®)4 = m®® = m (mod N).

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e" (mod (p—1)(g—1)).
Want: (m®)? = m®® =m (mod N).

Another view:
d=e"" (mod (p—1)(g—1)) « ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a*"=1 (mod p).

= gD =1 (mod p) = &PV =a (mod p)
versus  &@(P-N@N+1 — 3 (mod pq).
Similar, not same, but useful.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a* =1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p— 1} modulo p.

(@1)-(a-2)-(a(p-1)=1-2-(p~1) modp,
Since multiplication is commutative.

aP (1 (p—1))=(1--(p—1)) modp.
Each of 2,...(p— 1) has an inverse modulo p, solve to get...

a®P =1 modp.

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'+tb(P-1) = 3 (mod p)
Proof: If a=0 (mod p), of course.

Otherwise
althle-1) = gl 4 (g ") = ax(1)P = a (mod p)

...Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'thP-1) = g (mod p)

Lemma 2: For any two different primes p, g and any x, k,
x'ke=1(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

XTHPDE@D Z x  (mod q)

Let a= x, b= k(q—1) and apply Lemma 1 with modulus p.

XD = (mod p)

x1+k@1e-1) _ x is multiple of p and q.
x1HK@1P-1) _x =0 mod (pg) = x"tK@ 1P = x mod pq.

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+ke-1@-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°)? =x =x (mod pa).

where ed=1 mod (p—1)(q—1) = ed=1+k(p—1)(g—1)

x84 = xkP=1D@-D+1= x  (mod pq).




Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

x(N) > N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with ged(e, (p—1)(g—1))=1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.

All steps are polynomial in O(log N), the number of bits.

Security of RSA.

Security?
1. Alice knows p and gq.

2. Bob only knows, N(= pg), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.

Breaking in general sense = factoring algorithm.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.
CS161...

Signatures using RSA.

Verisign: k,, K,

[C,S.(C)] C = E(Sy(C),ky)?
[C,S/(C)] [C.Sv(C)]

(Amazon - Browser. .

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: Ky = (N,e) and ky = d (N = pq.)

Browser “knows” Verisign’s public key: Ky .

Amazon Certificate: C = “l am Amazon. My public Key is K.
Versign signature of C: S,(C): D(C,ky)=C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C).Ky) = (5/(C))? = (C%)° = C% = C (mod N)

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N =m.
Signature scheme:
E(D(C,k),K)=(C%® mod N=C

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?




Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"! (mod (p—1)(g—1)).
E(x) =x€ (mod N).
D(y)=y? (mod N).

Repeated Squaring = efficiency.
Fermat's Theorem = correctness.
Good for Encryption and Signature Schemes.




