CS70: Lecture 9. Outline.

- 1. Public Key Cryptography
- 2. RSA system
 - 2.1 Efficiency: Repeated Squaring.
 - 2.2 Correctness: Fermat's Theorem.
 - 2.3 Construction.
- 3. Warnings.

Cryptography ...

Example:

One-time Pad: secret s is string of length |m|.

m = 101010111110101101

E(m,s) – bitwise $m \oplus s$.

D(x,s) – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Isomorphisms.

Bijection:

 $f(x) = ax \pmod{m}$ if gcd(a, m) = 1.

Simplified Chinese Remainder Theorem:

There is a unique $x \pmod{mn}$ where $x = a \pmod{m}$ and x = b(mod n) and gcd(n,m) = 1.

Bijection between $(a \pmod{n}, b \pmod{m})$ and $x \pmod{m}n$.

Consider m = 5, n = 9, then if (a, b) = (3, 7) then $x = 43 \pmod{45}$.

Consider (a', b') = (2, 4), then $x = 22 \pmod{45}$.

Now consider: (a,b)+(a',b')=(0,2).

What is x where $x = 0 \pmod{5}$ and $x = 2 \pmod{9}$?

Try $43 + 22 = 65 = 20 \pmod{45}$.

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:

the actions under (mod 5), (mod 9) correspond to actions in (mod 45)!

Public key crypography.

$$m = D(E(m,K),k)$$

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K.

(Only?) Alice can decode with k.

Is this even possible?

Xor

Computer Science:

1 - True

0 - False

 $1 \lor 1 = 1$

 $1 \lor 0 = 1$

 $0 \lor 1 = 1$

 $0 \lor 0 = 0$

A⊕B - Exclusive or.

 $1 \oplus 1 = 0$

 $1 \oplus 0 = 1$

 $0 \oplus 1 = 1$

 $0 \oplus 0 = 0$

Note: Also modular addition modulo 2! $\{0,1\}$ is set. Take remainder for 2.

Property: $A \oplus B \oplus B = A$. By cases: $1 \oplus 1 \oplus 1 = 1$

Is public key crypto possible?

We don't really know.

...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p-1)(q-1).

Compute $d = e^{-1} \mod (p-1)(q-1)$.

Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key!

Encoding: $mod(x^e, N)$.

Decoding: $mod(y^d, N)$.

Does $D(E(m)) = m^{ed} = m \mod N$?

Yes!

¹Typically small, say e = 3.

Iterative Extended GCD.

```
Example: p=7, q=11.

N=77.

(p-1)(q-1)=60

Choose e=7, since \gcd(7,60)=1.

\gcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7
7(-8)+60(1) = 4
7(9)+60(-1) = 3
7(-17)+60(2) = 1
Confirm: -119+120=1
d=e^{-1}=-17=43= \pmod{60}
```

Recursive version.

The program computes the last expression using a recursive call with x^2 and y/2.

Note: v/2 is integer division.

Encryption/Decryption Techniques.

```
Public Key: (77,7) Message Choices: \{0,\ldots,76\}. Message: 2! E(2)=2^{e}=2^{7}\equiv 128\pmod{77}=51\pmod{77} D(51)=51^{43}\pmod{77} uh oh! Obvious way: 43 multiplications. Ouch. In general, O(N) or O(2^{n}) multiplications!
```

Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

```
1. x^{y}: Compute x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}.
```

2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary. $x^{43} = x^{32} * x^8 * x^2 * x^1.$

Modular Exponentiation: $x^y \mod N$. All *n*-bit numbers. Repeated Squaring:

O(n) multiplications. $O(n^2)$ time per multiplication. $\Rightarrow O(n^3)$ time. Conclusion: $x^y \mod N$ takes $O(n^3)$ time.

Repeated squaring.

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}. 4 multiplications sort of... Need to compute 51^{32} \dots 51^1 \cdot ? 51^1 = 51 \pmod{77} 51^1 = 51 \pmod{77} 51^2 = (51) * (51) = 2601 = 60 \pmod{77} 51^4 = (51^2) * (51^2) = 60 * 60 = 3600 = 58 \pmod{77} 51^8 = (51^4) * (51^4) = 58 * 58 = 3364 = 53 \pmod{77} 51^8 = (51^4) * (51^4) = 58 * 58 = 3364 = 53 \pmod{77} 51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 = 37 \pmod{77} 51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 = 60 \pmod{77} 5 more multiplications. 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) * (53) * (60) * (51) = 2 \pmod{77}. Decoding got the message back! Repeated Squaring took 9 multiplications versus 43.
```

RSA is pretty fast.

```
Modular Exponentiation: x^y \mod N. All n-bit numbers. O(n^3) time.
```

Remember RSA encoding/decoding!

```
\begin{split} E(m,(N,e)) &= m^e \pmod{N}. \\ D(m,(N,d)) &= m^d \pmod{N}. \end{split}
```

For 512 bits, a few hundred million operations. Easy, peasey.

Decoding.

```
\begin{split} E(m,(N,e)) &= m^e \pmod{N}, \\ D(m,(N,d)) &= m^d \pmod{N}, \\ N &= pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}, \\ \text{Want: } (m^e)^d &= m^{ed} = m \pmod{N}. \end{split}
```

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Lemma 1: For any prime p and any a,b, $a^{1+b(p-1)} \equiv a \pmod{p}$

Proof: If $a \equiv 0 \pmod{p}$, of course.

Othomuios

$$a^{1+b(p-1)} \equiv a^1 * (a^{p-1})^b \equiv a * (1)^b \equiv a \pmod{p}$$

Always decode correctly?

$$E(m,(N,e)) = m^e \pmod{N}.$$

 $D(m,(N,d)) = m^d \pmod{N}.$

N = pq and $d = e^{-1} \pmod{(p-1)(q-1)}$.

Want: $(m^e)^d = m^{ed} = m \pmod{N}$.

Another view:

$$d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$$

Consider.

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

$$\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies a^{k(p-1)+1} = a \pmod{p}$$

versus $a^{k(p-1)(q-1)+1} = a \pmod{pq}$.

Similar, not same, but useful.

...Decoding correctness...

Lemma 1: For any prime p and any a, b, $a^{1+b(p-1)} \equiv a \pmod{p}$

Lemma 2: For any two different primes p,q and any x,k, $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Let a = x, b = k(p-1) and apply Lemma 1 with modulus q.

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{a}$$

Let a = x, b = k(q-1) and apply Lemma 1 with modulus p.

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{p}$$

 $x^{1+k(q-1)(p-1)} - x$ is multiple of p and q.

$$x^{1+k(q-1)(p-1)} - x \equiv 0 \mod (pq) \implies x^{1+k(q-1)(p-1)} = x \mod pq$$

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \mod p$$

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1))\equiv (1\cdots(p-1))\mod p.$$

Each of $2, \dots (p-1)$ has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \mod p$$
.

RSA decodes correctly...

Lemma 2: For any two different primes p,q and any x,k, $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Theorem: RSA correctly decodes!

Recall

$$D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq},$$

where $ed \equiv 1 \mod (p-1)(q-1) \implies ed = 1 + k(p-1)(q-1)$

$$x^{ed} \equiv x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}.$$

Construction of keys....

Find large (100 digit) primes p and q?
 Prime Number Theorem: π(N) number of primes less than N.For all N > 17

$$\pi(N) \ge N/\ln N$$
.

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

- 2. Choose e with gcd(e, (p-1)(q-1)) = 1. Use gcd algorithm to test.
- 3. Find inverse d of e modulo (p-1)(q-1). Use extended gcd algorithm.

All steps are polynomial in $O(\log N)$, the number of bits.

Signatures using RSA.

$$[C,S_{V}(C)] \qquad \qquad C = E(S_{V}(C),k_{V})?$$

$$[C,S_{V}(C)] \qquad [C,S_{V}(C)]$$

$$[C,S_{V}(C)] \qquad [C,S_{V}(C)]$$
Browser. K_{V}

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign's key: $K_{V} = (N,e)$ and $k_{V} = d$ $(N = pq.)$

Browser "knows" Verisign's public key: K_{V} .

Amazon Certificate: $C =$ "1 am Amazon. My public Key is K_{A} ."

Versign signature of $C: S_{V}(C): D(C,k_{V}) = C^{d} \mod N$.

Browser receives: $[C,y]$
Checks $E(y,K_{V}) = C$?
$$E(S_{V}(C),K_{V}) = (S_{V}(C))^{e} = (C^{d})^{e} = C^{de} = C \pmod N$$
Valid signature of Amazon certificate C !

Security: Eve can't forge unless she "breaks" RSA scheme.

Security of RSA.

Security?

- 1. Alice knows p and q.
- Bob only knows, N(= pq), and e.
 Does not know, for example, d or factorization of N.
- 3. I don't know how to break this scheme without factoring *N*.

No one I know or have heard of admits to knowing how to factor N. Breaking in general sense \implies factoring algorithm.

RSA

Public Key Cryptography:

 $D(E(m,K),k) = (m^e)^d \mod N = m.$

Signature scheme:

 $E(D(C,k),K) = (C^d)^e \mod N = C$

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:

Bob encodes credit card number, *c*, concatenated with random *k*-bit number *r*.

Never sends just c.

Again, more work to do to get entire system.

CS161...

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Summary.

```
Public-Key Encryption.

RSA Scheme: N = pq and d = e^{-1} \pmod{(p-1)(q-1)}.

E(x) = x^e \pmod{N}.

D(y) = y^d \pmod{N}.

Repeated Squaring \implies efficiency.

Fermat's Theorem \implies correctness.

Good for Encryption and Signature Schemes.
```